Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient study results

McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, Technical Approaches, and clinical applications. Radiology. 2015;276:637–53.

Article  Google Scholar 

Kinahan PE, Alessio AM, Fessler JA. Dual Energy CT Attenuation Correction Methods for Quantitative Assessment of Response to Cancer Therapy with PET/CT imaging. Technol Cancer Res Treat. 2006;5:319–27.

Article  Google Scholar 

Freedman NMT, Moreno RM, Meunier LL, Bacharach SL. Identification of Contrast Media in PET/CT using Dual Energy CT. IEEE Trans Nucl Sci. 2007;54:523–7.

Article  Google Scholar 

Li S, Wang Y, Spencer B, Hunt H, Seibert JA, Nardo L, et al. Dual-energy CT bone-fraction correction for total-body PET kinetic quantification of bone marrow. J Nucl Med. 2022;63:4007–4007.

Google Scholar 

McGuire SM, Menda Y, Ponto LLB, Gross B, Buatti J, Bayouth JE. 3’-deoxy-3’-[18F]fluorothymidine PET quantification of bone marrow response to Radiation Dose. Int J Radiat Oncol Biol Phys. 2011;81:888–93.

Article  PubMed Central  Google Scholar 

Wang G. PET-enabled dual-energy CT: image reconstruction and a proof-of-concept computer simulation study. Phys Med Biol. 2020;65:245028.

Article  PubMed Central  Google Scholar 

Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous Reconstruction of Activity and Attenuation in Time-of-flight PET. IEEE Trans Med Imaging. 2012;31:2224–33.

Article  Google Scholar 

Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885.

Article  Google Scholar 

Rezaei A, Defrise M, Nuyts J. ML-Reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE Trans Med Imaging. 2014;33:1563–72.

Article  Google Scholar 

Boellaard R, Hofman MBM, Hoekstra OS, Lammertsma AA. Accurate PET/MR quantification using time of Flight MLAA Image Reconstruction. Mol Imaging Biol. 2014;16:469–77.

Article  Google Scholar 

Panin VY, Aykac M, Casey ME. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source. Phys Med Biol. 2013;58:3649.

Article  Google Scholar 

Presotto L, Busnardo E, Perani D, Gianolli L, Gilardi MC, Bettinardi V. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts. J Nucl Cardiol. 2016;23:1086–97.

Article  Google Scholar 

Mehranian A, Zaidi H. Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian Mixture models. IEEE Trans Med Imaging. 2015;34:1808–21.

Article  Google Scholar 

Heußer T, Rank CM, Berker Y, Freitag MT, Kachelrieß M. MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging. EJNMMI Phys. 2017;4:12.

Article  PubMed Central  Google Scholar 

Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V. Simultaneous Reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging. 2011;30:804–13.

Article  Google Scholar 

Li S, Wang G. Modified kernel MLAA using autoencoder for PET-enabled dual-energy CT. Philosophical Trans Royal Soc A: Math Phys Eng Sci. 2021;379:20200204.

Article  Google Scholar 

Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2020.

Erdogan H, Fessler JA. Monotonic algorithms for transmission tomography. IEEE Trans Med Imaging. 1999;18:801–14.

Article  Google Scholar 

Merlin T, Stute S, Benoit D, Bert J, Carlier T, Comtat C, et al. CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction. Phys Med Biol. 2018;63:185005.

Article  Google Scholar 

Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the Abdomen. Radiology. 2014;271:327–42.

Article  Google Scholar 

Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33:166–79.

Article  Google Scholar 

Zhu W, Feng T, Dong Y, Bao J, Li HA, Systematic Study on Factors Influencing the Accuracy of MLAA. 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) [Internet]. 2017 [cited 2024 Jan 16]. pp. 1–3. https://ieeexplore.ieee.org/document/8532766

Nuyts J, Rezaei A, Defrise M. The Validation Problem of Joint Emission/Transmission Reconstruction from TOF-PET projections. IEEE Trans Radiation Plasma Med Sci. 2018;2:273–8.

Article  Google Scholar 

Rezaei A, Schramm G, Willekens SMA, Delso G, Laere KV, Nuyts J. A quantitative evaluation of Joint Activity and Attenuation Reconstruction in TOF PET/MR Brain Imaging. J Nucl Med. 2019;60:1649–55.

Article  PubMed Central  Google Scholar 

Rezaei A, Schramm G, Van Laere K, Nuyts J. Estimation of Crystal Timing Properties and efficiencies for the improvement of (Joint) Maximum-Likelihood reconstructions in TOF-PET. IEEE Trans Med Imaging. 2020;39:952–63.

Article  Google Scholar 

Defrise M, Salvo K, Rezaei A, Nuyts J, Panin V, Casey M, ML estimation of the scatter scaling in TOF PET. 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) [Internet]. 2014 [cited 2024 Jan 16]. pp. 1–5. https://ieeexplore.ieee.org/abstract/document/7430898

Li S, Wang G, Low-Dose CT. Image Denoising Using Parallel-Clone Networks [Internet]. arXiv; 2020 [cited 2024 Feb 1]. http://arxiv.org/abs/2005.06724

Rezaei A, Salvo K, Vahle T, Panin V, Casey M, Boada F, et al. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate. Phys Med Biol. 2017;62:6515.

Article  PubMed Central  Google Scholar 

Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

Article  Google Scholar 

Abdullayev N, Große Hokamp N, Lennartz S, Holz JA, Romman Z, Pahn G, et al. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol. 2019;29:5941–9.

Article  Google Scholar 

Borggrefe J, Neuhaus V-F, Le Blanc M, Grosse Hokamp N, Maus V, Mpotsaris A, et al. Accuracy of iodine density thresholds for the separation of vertebral bone metastases from healthy-appearing trabecular bone in spectral detector computed tomography. Eur Radiol. 2019;29:3253–61.

Article  Google Scholar 

Issa G, Davis D, Mulligan ME. The ability of dual-energy computed tomography to Distinguish Normal Bone Marrow from metastases using bone marrow Color maps. J Comput Assist Tomogr. 2018;42:552.

Article  Google Scholar 

Zhu Y, Spencer BA, Xie Z, Leung EK, Bayerlein R, Omidvari N et al. Super-resolution reconstruction of γ-ray CT images for PET-enabled dual-energy CT imaging. Medical Imaging 2023: Physics of Medical Imaging [Internet]. SPIE; 2023 [cited 2024 Jan 20]. pp. 291–6. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12463/124631F/Super-resolution-reconstruction-of-%ce%b3-ray-CT-images-for-PET/https://doi.org/10.1117/12.2654431.full

Li S, Zhu Y, Spencer BA, Wang G. Single-subject Deep-Learning Image Reconstruction with a neural optimization transfer algorithm for PET-Enabled dual-energy CT imaging. IEEE Trans Image Process. 2024;33:4075–89.

Article  Google Scholar 

留言 (0)

沒有登入
gif