McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, Technical Approaches, and clinical applications. Radiology. 2015;276:637–53.
Kinahan PE, Alessio AM, Fessler JA. Dual Energy CT Attenuation Correction Methods for Quantitative Assessment of Response to Cancer Therapy with PET/CT imaging. Technol Cancer Res Treat. 2006;5:319–27.
Freedman NMT, Moreno RM, Meunier LL, Bacharach SL. Identification of Contrast Media in PET/CT using Dual Energy CT. IEEE Trans Nucl Sci. 2007;54:523–7.
Li S, Wang Y, Spencer B, Hunt H, Seibert JA, Nardo L, et al. Dual-energy CT bone-fraction correction for total-body PET kinetic quantification of bone marrow. J Nucl Med. 2022;63:4007–4007.
McGuire SM, Menda Y, Ponto LLB, Gross B, Buatti J, Bayouth JE. 3’-deoxy-3’-[18F]fluorothymidine PET quantification of bone marrow response to Radiation Dose. Int J Radiat Oncol Biol Phys. 2011;81:888–93.
Article PubMed Central Google Scholar
Wang G. PET-enabled dual-energy CT: image reconstruction and a proof-of-concept computer simulation study. Phys Med Biol. 2020;65:245028.
Article PubMed Central Google Scholar
Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous Reconstruction of Activity and Attenuation in Time-of-flight PET. IEEE Trans Med Imaging. 2012;31:2224–33.
Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885.
Rezaei A, Defrise M, Nuyts J. ML-Reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE Trans Med Imaging. 2014;33:1563–72.
Boellaard R, Hofman MBM, Hoekstra OS, Lammertsma AA. Accurate PET/MR quantification using time of Flight MLAA Image Reconstruction. Mol Imaging Biol. 2014;16:469–77.
Panin VY, Aykac M, Casey ME. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source. Phys Med Biol. 2013;58:3649.
Presotto L, Busnardo E, Perani D, Gianolli L, Gilardi MC, Bettinardi V. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts. J Nucl Cardiol. 2016;23:1086–97.
Mehranian A, Zaidi H. Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian Mixture models. IEEE Trans Med Imaging. 2015;34:1808–21.
Heußer T, Rank CM, Berker Y, Freitag MT, Kachelrieß M. MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging. EJNMMI Phys. 2017;4:12.
Article PubMed Central Google Scholar
Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V. Simultaneous Reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging. 2011;30:804–13.
Li S, Wang G. Modified kernel MLAA using autoencoder for PET-enabled dual-energy CT. Philosophical Trans Royal Soc A: Math Phys Eng Sci. 2021;379:20200204.
Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2020.
Erdogan H, Fessler JA. Monotonic algorithms for transmission tomography. IEEE Trans Med Imaging. 1999;18:801–14.
Merlin T, Stute S, Benoit D, Bert J, Carlier T, Comtat C, et al. CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction. Phys Med Biol. 2018;63:185005.
Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the Abdomen. Radiology. 2014;271:327–42.
Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33:166–79.
Zhu W, Feng T, Dong Y, Bao J, Li HA, Systematic Study on Factors Influencing the Accuracy of MLAA. 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) [Internet]. 2017 [cited 2024 Jan 16]. pp. 1–3. https://ieeexplore.ieee.org/document/8532766
Nuyts J, Rezaei A, Defrise M. The Validation Problem of Joint Emission/Transmission Reconstruction from TOF-PET projections. IEEE Trans Radiation Plasma Med Sci. 2018;2:273–8.
Rezaei A, Schramm G, Willekens SMA, Delso G, Laere KV, Nuyts J. A quantitative evaluation of Joint Activity and Attenuation Reconstruction in TOF PET/MR Brain Imaging. J Nucl Med. 2019;60:1649–55.
Article PubMed Central Google Scholar
Rezaei A, Schramm G, Van Laere K, Nuyts J. Estimation of Crystal Timing Properties and efficiencies for the improvement of (Joint) Maximum-Likelihood reconstructions in TOF-PET. IEEE Trans Med Imaging. 2020;39:952–63.
Defrise M, Salvo K, Rezaei A, Nuyts J, Panin V, Casey M, ML estimation of the scatter scaling in TOF PET. 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) [Internet]. 2014 [cited 2024 Jan 16]. pp. 1–5. https://ieeexplore.ieee.org/abstract/document/7430898
Li S, Wang G, Low-Dose CT. Image Denoising Using Parallel-Clone Networks [Internet]. arXiv; 2020 [cited 2024 Feb 1]. http://arxiv.org/abs/2005.06724
Rezaei A, Salvo K, Vahle T, Panin V, Casey M, Boada F, et al. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate. Phys Med Biol. 2017;62:6515.
Article PubMed Central Google Scholar
Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.
Abdullayev N, Große Hokamp N, Lennartz S, Holz JA, Romman Z, Pahn G, et al. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol. 2019;29:5941–9.
Borggrefe J, Neuhaus V-F, Le Blanc M, Grosse Hokamp N, Maus V, Mpotsaris A, et al. Accuracy of iodine density thresholds for the separation of vertebral bone metastases from healthy-appearing trabecular bone in spectral detector computed tomography. Eur Radiol. 2019;29:3253–61.
Issa G, Davis D, Mulligan ME. The ability of dual-energy computed tomography to Distinguish Normal Bone Marrow from metastases using bone marrow Color maps. J Comput Assist Tomogr. 2018;42:552.
Zhu Y, Spencer BA, Xie Z, Leung EK, Bayerlein R, Omidvari N et al. Super-resolution reconstruction of γ-ray CT images for PET-enabled dual-energy CT imaging. Medical Imaging 2023: Physics of Medical Imaging [Internet]. SPIE; 2023 [cited 2024 Jan 20]. pp. 291–6. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12463/124631F/Super-resolution-reconstruction-of-%ce%b3-ray-CT-images-for-PET/https://doi.org/10.1117/12.2654431.full
Li S, Zhu Y, Spencer BA, Wang G. Single-subject Deep-Learning Image Reconstruction with a neural optimization transfer algorithm for PET-Enabled dual-energy CT imaging. IEEE Trans Image Process. 2024;33:4075–89.
留言 (0)