Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proceedings of the National Academy of Sciences 1990;87:7235–9. https://www.pnas.org/doi/abs/10.1073/pnas.87.18.7235.
Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 2012;11:257–66. https://doi.org/10.1158/1535-7163.MCT-11-0340.
Article PubMed PubMed Central CAS Google Scholar
Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem. 2019;4:16. https://doi.org/10.1186/s41181-019-0069-0.
Article PubMed PubMed Central Google Scholar
Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415. https://doi.org/10.2967/jnumed.118.210443.
Article PubMed CAS Google Scholar
Loktev A, Lindner T, Burger E-M, Altmann A, Giesel F, Kratochwil C, et al. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J Nucl Med. 2019;60:1421. https://doi.org/10.2967/jnumed.118.224469.
Article PubMed PubMed Central CAS Google Scholar
Millul J, Bassi G, Mock J, Elsayed A, Pellegrino C, Zana A, et al. An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications. Proc Natl Acad Sci. 2021;118:e2101852118. https://doi.org/10.1073/pnas.2101852118.
Article PubMed PubMed Central CAS Google Scholar
Backhaus P, Gierse F, Burg MC, Büther F, Asmus I, Dorten P, et al. Translational imaging of the fibroblast activation protein (FAP) using the new ligand [68Ga]Ga-OncoFAP-DOTAGA. Eur J Nucl Med Mol Imaging. 2022;49:1822–32. https://doi.org/10.1007/s00259-021-05653-0.
Article PubMed CAS Google Scholar
Galbiati A, Dorten P, Gilardoni E, Gierse F, Bocci M, Zana A, et al. Tumor-targeted interleukin 2 boosts the anticancer activity of FAP-directed radioligand therapeutics. J Nucl Med. 2023;64:jnumed.123.266007. https://doi.org/10.2967/jnumed.123.266007.
Galbiati A, Zana A, Bocci M, Millul J, Elsayed A, Mock J, et al. A novel dimeric FAP-targeting small molecule-radio conjugate with high and prolonged tumour uptake. J Nucl Med. 2022;jnumed.122.264036. https://doi.org/10.2967/jnumed.122.264036.
Galbiati A, Bocci M, Gervasoni S, Prodi E, Malloci G, Neri D, et al. Molecular evolution of multivalent OncoFAP derivatives with enhanced tumor uptake and prolonged tumor retention. J Med Chem. 2024. https://doi.org/10.1021/acs.jmedchem.4c01295.
Galbiati A, Bocci M, Ravazza D, Mock J, Gilardoni E, Neri D, et al. Preclinical evaluation of 177Lu-OncoFAP-23, a multivalent FAP-targeted radiopharmaceutical therapeutic for the treatment of solid tumors. J Nucl Med. 2024. https://doi.org/10.2967/jnumed.124.268200.
Haberkorn U, Giesel F, Morgenstern A, Kratochwil C. The future of radioligand therapy: α, β, or both? J Nucl Med. 2017;58:1017. https://doi.org/10.2967/jnumed.117.190124.
Article PubMed CAS Google Scholar
Park EA, Graves SA, Menda Y. The impact of radiopharmaceutical therapy on renal function. Semin Nucl Med. 2022;52:467–74. https://doi.org/10.1053/j.semnuclmed.2022.02.004.
Wurzer A, Pollmann J, Schmidt A, Reich D, Wester H-J, Notni J. Molar activity of Ga-68 labeled PSMA inhibitor conjugates determines PET imaging results. Mol Pharm. 2018;15:4296–302. https://doi.org/10.1021/acs.molpharmaceut.8b00602.
Article PubMed CAS Google Scholar
Tschan VJ, Borgna F, Schibli R, Müller C. Impact of the mouse model and molar amount of injected ligand on the tissue distribution profile of PSMA radioligands. Eur J Nucl Med Mol Imaging. 2022;49:470–80. https://doi.org/10.1007/s00259-021-05446-5.
Article PubMed CAS Google Scholar
Siebinga H, de Wit-van der Veen BJ, Beijnen JH, Dorlo TPC, Huitema ADR, Hendrikx JJMA. A physiologically based pharmacokinetic model for [68Ga]Ga-(HA-)DOTATATE to predict whole-body distribution and tumor sink effects in GEP-NET patients. EJNMMI Res. 2023;13:8. https://doi.org/10.1186/s13550-023-00958-7.
Article PubMed PubMed Central CAS Google Scholar
Kelly JM, Amor-Coarasa A, Ponnala S, Nikolopoulou A, Williams C, DiMagno SG, et al. Albumin-binding PSMA Ligands: implications for expanding the therapeutic window. J Nucl Med. 2019;60:656. https://doi.org/10.2967/jnumed.118.221150.
Article PubMed CAS Google Scholar
Parihar AS, Chopra S, Prasad V. Nephrotoxicity after radionuclide therapies. Transl Oncol. 2022;15:101295. https://doi.org/10.1016/j.tranon.2021.101295.
Article PubMed CAS Google Scholar
AbbasiGharibkandi N, Conlon JM, Hosseinimehr SJ. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides (NY). 2020;133:170385. https://doi.org/10.1016/j.peptides.2020.170385.
Fallah J, Agrawal S, Gittleman H, Fiero MH, Subramaniam S, John C, et al. FDA Approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for Patients with Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res. 2023;29:1651–7. https://doi.org/10.1158/1078-0432.CCR-22-2875.
Article PubMed PubMed Central CAS Google Scholar
Hennrich U, Eder M. [177Lu]Lu-PSMA-617 (PluvictoTM): The first FDA-approved radiotherapeutical for treatment of prostate cancer. Pharmaceuticals. MDPI; 2022. https://doi.org/10.3390/ph15101292.
Hennrich U, Kopka K. Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals. MDPI AG; 2019. https://doi.org/10.3390/ph12030114.
Geenen L, Nonnekens J, Konijnenberg M, Baatout S, De Jong M, Aerts A. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours. Nucl Med Biol. 2021;102–103:1–11. https://doi.org/10.1016/j.nucmedbio.2021.06.006.
Article PubMed CAS Google Scholar
Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers Pharmacology and Toxicology Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. 2005; https://www.fda.gov/media/72309. Accessed 5 July 2024.
留言 (0)