Sung H, Ferlay J, Siegel RL, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article CAS PubMed Google Scholar
Wei WQ, Hao CQ, Guan CT, et al. Esophageal histological precursor lesions and subsequent 8.5-year cancer risk in a population-based prospective study in China. Am J Gastroenterol. 2020;115(7):1036–44. https://doi.org/10.14309/ajg.0000000000000640.
Article PubMed PubMed Central Google Scholar
di Pietro M, Canto MI, Fitzgerald RC. Endoscopic management of early adenocarcinoma and squamous cell carcinoma of the esophagus: screening, diagnosis, and therapy. Gastroenterology. 2018;154(2):421–36. https://doi.org/10.1053/j.gastro.2017.07.041.
Li X, Chen L, Luan S, et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin Cancer Biol. 2022;86(Pt 2):873–85. https://doi.org/10.1016/j.semcancer.2022.01.007.
Article CAS PubMed Google Scholar
Li L, Li W, Xu D, et al. Association between visceral fat area and cancer prognosis: a population-based multicenter prospective study. Am J Clin Nutr. 2023;118(3):507–17. https://doi.org/10.1016/j.ajcnut.2023.07.001.
Article CAS PubMed Google Scholar
Hinzpeter R, Mirshahvalad SA, Kulanthaivelu R, et al. Prognostic value of [18F]-FDG PET/CT radiomics combined with sarcopenia status among patients with advanced gastroesophageal cancer. Cancers (Basel). 2022;14(21):5314. https://doi.org/10.3390/cancers14215314. Published 2022 Oct 28.
Article CAS PubMed Google Scholar
Anconina R, Ortega C, Metser U, et al. Influence of Sarcopenia, clinical data, and 2-[18F] FDG PET/CT in outcome prediction of patients with early-stage adenocarcinoma esophageal cancer. Eur J Nucl Med Mol Imaging. 2022;49(3):1012–20. https://doi.org/10.1007/s00259-021-05514-w.
Saalfeld S, Kreher R, Hille G, et al. Prognostic role of radiomics-based body composition analysis for the 1-year survival for hepatocellular carcinoma patients. J Cachexia Sarcopenia Muscle. 2023;14(5):2301–9. https://doi.org/10.1002/jcsm.13315.
Article PubMed PubMed Central Google Scholar
Mariette C, De Botton ML, Piessen G. Surgery in esophageal and gastric cancer patients: what is the role for nutrition support in your daily practice? Ann Surg Oncol. 2012;19:2128e34. https://doi.org/10.1245/s10434-012-2225-6.
Jordan T, Mastnak DM, Palamar N, Kozjek NR. Nutritional therapy for patients with esophageal cancer. Nutr Cancer. 2018;70:23–9. https://doi.org/10.1080/01635581.2017.1374417.
Yuan S, Larsson SC. Epidemiology of Sarcopenia: prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. https://doi.org/10.1016/j.metabol.2023.
Article CAS PubMed Google Scholar
Morishita S. Prevalence of Sarcopenia in Cancer patients: review and future directions. Int J Phys Med Rehabil. 2016;4:1000342.
Pei X, Xie Y, Liu Y, et al. Imaging-based adipose biomarkers for predicting clinical outcomes of cancer patients treated with immune checkpoint inhibitors: a systematic review. Front Oncol. 2023;13:1198723. https://doi.org/10.3389/fonc.2023.1198723. Published 2023 Oct 17.
Article CAS PubMed PubMed Central Google Scholar
Lee JW, Lee SM. Radiomics in Oncological PET/CT: clinical applications. Nucl Med Mol Imaging. 2018;52(3):170–89. https://doi.org/10.1007/s13139-017-0500-y.
De Bari B, Lefevre L, Henriques J, et al. Could 18-FDG PET-CT Radiomic features predict the Locoregional Progression-Free Survival in Inoperable or Unresectable Oesophageal Cancer? Cancers (Basel). 2022;14(16):4043. https://doi.org/10.3390/cancers14164043. Published 2022 Aug 22.
Article CAS PubMed Google Scholar
Sah BR, Owczarczyk K, Siddique M, Cook GJR, Goh V. Radiomics in esophageal and gastric cancer. Abdom Radiol (NY). 2019;44(6):2048–58. https://doi.org/10.1007/s00261-018-1724-8.
Anconina R, Ortega C, Metser U, et al. Combined 18 F-FDG PET/CT Radiomics and Sarcopenia score in Predicting Relapse-Free Survival and overall survival in patients with Esophagogastric Cancer. Clin Nucl Med. 2022;47(8):684–91. https://doi.org/10.1097/RLU.0000000000004253.
Lu N, Zhang WJ, Dong L, et al. Dual-region radiomics signature: integrating primary tumor and lymph node computed tomography features improves survival prediction in esophageal squamous cell cancer. Comput Methods Programs Biomed. 2021;208:106287. https://doi.org/10.1016/j.cmpb.2021.106287.
Lucia F, Louis T, Cousin F, et al. Multicentric development and evaluation of [18F]FDG PET/CT and CT radiomic models to predict regional and/or distant recurrence in early-stage non-small cell lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging. 2024;51(4):1097–108. https://doi.org/10.1007/s00259-023-06510-y.
Article CAS PubMed Google Scholar
Dissaux G, Visvikis D, Da-Ano R, et al. Pretreatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in patients treated with stereotactic body Radiotherapy for Early-Stage Non-small Cell Lung Cancer: a multicentric study. J Nucl Med. 2020;61(6):814–20. https://doi.org/10.2967/jnumed.119.228106.
Article CAS PubMed Google Scholar
Irving BA, Weltman JY, Brock DW, Davis CK, Gaesser GA, Weltman A. NIH ImageJ and Slice-O-Matic computed tomography imaging software to quantify soft tissue. Obes (Silver Spring). 2007;15(2):370–6. https://doi.org/10.1038/oby. 2007.573.
Cespedes Feliciano EM, Popuri K, Cobzas D, et al. Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients. J Cachexia Sarcopenia Muscle. 2020;11(5):1258–69. https://doi.org/10.1002/jcsm.12573.
Article PubMed PubMed Central Google Scholar
Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for Sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018;8(1):11369. https://doi.org/10.1038/s41598-018-29825-5.
Article CAS PubMed PubMed Central Google Scholar
Nioche C, Orlhac F, Boughdad S, et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018;78(16):4786–9. https://doi.org/10.1158/0008-5472.CAN-18-0125.
Article CAS PubMed Google Scholar
Rice TW, Patil DT, Blackstone EH. 8th edition AJCC/UICC staging of cancers of the esophagus and esophagogastric junction: application to clinical practice. Ann Cardiothorac Surg. 2017;6(2):119–30. https://doi.org/10.21037/acs.2017.03.14.
Article PubMed PubMed Central Google Scholar
Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44(1):151–65. https://doi.org/10.1007/s00259-016-3427-0.
Carlier T, Frécon G, Mateus D, et al. Prognostic value of 18F-FDG PET Radiomics features at baseline in PET-Guided consolidation strategy in diffuse large B-Cell lymphoma: a machine-learning analysis from the GAINED study. J Nucl Med. 2024;65(1):156–62. https://doi.org/10.2967/jnumed.123.265872. Published 2024 Jan 2.
Article CAS PubMed Google Scholar
Wang P, Luo Z, Luo C, Wang T. Application of a comprehensive model based on CT Radiomics and Clinical features for postoperative recurrence risk prediction in non-small cell Lung Cancer. Acad Radiol. 2024. https://doi.org/10.1016/j.acra.2023.11.028.
Huang W, Li L, Liu S, et al. Enhanced CT-based radiomics predicts pathological complete response after neoadjuvant chemotherapy for advanced adenocarcinoma of the esophagogastric junction: a two-center study. Insights Imaging. 2022;13(1):134. https://doi.org/10.1186/s13244-022-01273-w. Published 2022 Aug 17.
留言 (0)