Tan, C., Zhang, A., Chen, H. & Zhou, R. Recent proceedings on prevalence and pathogenesis of Streptococcus suis. Curr. issues Mol. Biol. 32, 473–520 (2019).
Segura, M. Streptococcus suis research: progress and challenges. Pathogens 9, 707 (2020).
Bonifait, L., Veillette, M., Létourneau, V., Grenier, D. & Duchaine, C. Detection of Streptococcus suis in bioaerosols of swine confinement buildings. Appl. Environ. Microbiol. 80, 3296–3304 (2014).
Article PubMed PubMed Central Google Scholar
Dutkiewicz, J. et al. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II - pathogenesis. Ann. Agric. Environ. Med. AAEM 25, 186–203 (2018).
Article CAS PubMed Google Scholar
Dong, X. et al. The global emergence of a novel Streptococcus suis clade associated with human infections. EMBO Mol. Med. 13, e13810 (2021).
Article CAS PubMed PubMed Central Google Scholar
Feng, Y., Zhang, H., Ma, Y. & Gao, G. F. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol. 18, 124–131 (2010).
Article CAS PubMed Google Scholar
Segura, M. et al. Update on Streptococcus suis research and prevention in the era of antimicrobial restriction: 4th international workshop on S. suis. Pathogens (Basel, Switzerland) 9, 374 (2020).
Bojarska, A. et al. Diversity of serotypes and new cps loci variants among Streptococcus suis isolates from pigs in Poland and Belarus. Vet. Microbiol. 240, 108534 (2020).
Article CAS PubMed Google Scholar
Zhu, J. et al. Streptococcus suis serotype 4: a population with the potential pathogenicity in humans and pigs. Emerg. microbes Infect. 13, 2352435 (2024).
Article PubMed PubMed Central Google Scholar
Goyette-Desjardins, G., Auger, J. P., Xu, J., Segura, M. & Gottschalk, M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. microbes Infect. 3, e45 (2014).
Article PubMed PubMed Central Google Scholar
Kang, W. et al. Investigation of genomic and pathogenicity characteristics of Streptococcus suis ST1 human strains from Guangxi Zhuang Autonomous region (GX) between 2005 and 2020 in China. Emerg. Microbes Infect. 13, 2339946 (2024).
Article PubMed PubMed Central Google Scholar
Maneerat, K. et al. Virulence genes and genetic diversity of Streptococcus suis serotype 2 isolates from Thailand. Transbound. Emerg. Dis. 60, 69–79 (2013).
Atanassov, C., Bonifait, L., Perivier, M., Gottschalk, M. & Grenier, D. Candidate proteomic biomarkers for three genogroups of the swine pathogen Streptococcus suis serotype 2. BMC Microbiol. 15, 84 (2015).
Article PubMed PubMed Central Google Scholar
Segura, M. Streptococcus suis vaccines: candidate antigens and progress. Expert Rev. Vaccines 14, 1587–1608 (2015).
Article CAS PubMed Google Scholar
Fan, Q., Wang, H., Wang, Y., Yi, L. & Wang, Y. Evaluation of the protective efficacy of three novel identified membrane associated proteins of Streptococcus suis serotype 2. Micro. Pathog. 193, 106759 (2024).
Yi, L. etal. Evaluation of immune effect of Streptococcus suis biofilm-associated protein PDH. Vet. Microbiol 263, (2021).
Wang, H., Fan, Q., Wang, Y., Yi, L. & Wang, Y. Rethinking the control of Streptococcus suis infection: Biofilm formation. Vet. Microbiol. 290, 110005 (2024).
Article CAS PubMed Google Scholar
Wang, J. et al. Identification of a novel linear B cell epitope on the sao protein of Streptococcus suis serotype 2. Front. Immunol. 11, 1492 (2020).
Article PubMed PubMed Central Google Scholar
Li, W., Wan, Y., Tao, Z., Chen, H. & Zhou, R. A novel fibronectin-binding protein of Streptococcus suis serotype 2 contributes to epithelial cell invasion and in vivo dissemination. Vet. Microbiol. 162, 186–194 (2013).
Article CAS PubMed Google Scholar
Ji, Y., Sun, K., Yang, Y. & Wu, Z. Dihydroartemisinin ameliorates innate inflammatory response induced by Streptococcussuis-derived muramidase-released protein via inactivation of TLR4-dependent NF-κB signaling. J. Pharm. Anal. 13, 1183–1194 (2023).
Article PubMed PubMed Central Google Scholar
Garibaldi, M. et al. Immunoprotective activities of a Streptococcus suis pilus subunit in murine models of infection. Vaccine 28, 3609–3616 (2010).
Article CAS PubMed Google Scholar
Li, Q. et al. Identification of novel laminin- and fibronectin-binding proteins by far-western blot: capturing the adhesins of Streptococcus suis type 2. Front. Cell. Infect. Microbiol. 5, 82 (2015).
Article CAS PubMed PubMed Central Google Scholar
Li, Q. et al. Live attenuated salmonella enterica serovar choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against Streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 38, 6904–6913 (2020).
Article CAS PubMed Google Scholar
Zhang, S. et al. Discovery of oligosaccharide antigens for semi-synthetic glycoconjugate vaccine leads against Streptococcus suis serotypes 2, 3, 9 and 14*. Angew. Chem. (Int. ed. Engl.) 60, 14679–14692 (2021).
Article CAS PubMed Google Scholar
Wisselink, H. J., Vecht, U., Stockhofe-Zurwieden, N. & Smith, H. E. Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine. Vet. Rec. 148, 473–477 (2001).
Article CAS PubMed Google Scholar
Li, Y. A. et al. Salmonella enterica serovar Choleraesuis vector delivering a dual-antigen expression cassette provides mouse cross-protection against Streptococcus suis serotypes 2, 7, 9, and 1/2. Vet. Res. 53, 46 (2022).
Article PubMed PubMed Central Google Scholar
Tahir Ul Qamar, M. et al. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect. Dis. poverty 9, 132 (2020).
Article PubMed PubMed Central Google Scholar
Goodswen, S. J., Kennedy, P. J. & Ellis, J. T. A guide to current methodology and usage of reverse vaccinology towards in silico vaccine discovery. FEMS Microbiol. Rev. 47, fuad004 (2023).
Albutti, A. An integrated multi-pronged reverse vaccinology and biophysical approaches for identification of potential vaccine candidates against Nipah virus. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 31, 101826 (2023).
Tang, X. D. et al. In vitro and ex vivo evaluation of a multi-epitope heparinase vaccine for various malignancies. Cancer Sci. 105, 9–17 (2014).
Article CAS PubMed Google Scholar
Cong, H. et al. Comparative efficacy of a multi-epitope DNA vaccine via intranasal, peroral, and intramuscular delivery against lethal toxoplasma gondii infection in mice. Parasit. Vectors 7, 145 (2014).
Article PubMed PubMed Central Google Scholar
Zhu, S. et al. Hepatitis B virus surface antigen as delivery vector can enhance Chlamydia trachomatis MOMP multi-epitope immune response in mice. Appl. Microbiol. Biotechnol. 98, 4107–4117 (2014).
Article CAS PubMed Google Scholar
Liao, J. et al. A rational designed multi-epitope vaccine elicited robust protective efficacy against Klebsiella pneumoniae lung infection. Biomed. Pharmacother. Biomed. Pharmacotherapie 174, 116611 (2024).
Tahir Ul Qamar, M. et al. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput. Biol. Med. 132, 104389 (2021).
Article CAS PubMed Google Scholar
Kalita, A., Kalita, M. & Torres, A. G. Exploiting the power of OMICS approaches to produce E. coli O157 vaccines. Gut Microbes 5, 770–774 (2014).
留言 (0)