James C, Harfouche M, Welton NJ, Turner KM, Abu-Raddad LJ, Gottlieb SL, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98:315–29. https://doi.org/10.2471/BLT.19.237149.
Article PubMed PubMed Central Google Scholar
Steiner I, Kennedy PG. Herpes simplex virus latent infection in the nervous system. J Neurovirol. 1995;1:19–29. https://doi.org/10.3109/13550289509111007.
Article CAS PubMed Google Scholar
Knipe D. Herpes simplex viruses: mechanisms of lytic and latent infection. In: Howley PM, editor. Fields virology. 7th edn. Wolters Kluwer; 2021. pp. 235–96.
Manservigi R, Argnani R, Marconi P. HSV recombinant vectors for gene therapy. Open Virol J. 2010;4:123–56. https://doi.org/10.2174/1874357901004030123.
Article CAS PubMed PubMed Central Google Scholar
Lachmann R. Herpes simplex virus-based vectors. Int J Exp Pathol. 2004;85:177–90. https://doi.org/10.1111/j.0959-9673.2004.00383.x.
Article CAS PubMed PubMed Central Google Scholar
Epstein AL. Progress and prospects: biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther. 2009;16:709–15. https://doi.org/10.1038/gt.2009.42.
Article CAS PubMed Google Scholar
Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–8. https://doi.org/10.1016/S0140-6736(00)04638-9.
Article CAS PubMed Google Scholar
Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes simplex virus cell entry mechanisms: an update. Front Cell Infect Microbiol. 2021;10:617578. https://doi.org/10.3389/fcimb.2020.617578.
Article PubMed PubMed Central Google Scholar
Jambunathan N, Clark CM, Musarrat F, Chouljenko VN, Rudd J, Kousoulas KG. Two sides to every story: herpes simplex type-1 viral glycoproteins gB, gD, gH/gL, gK, and cellular receptors function as key players in membrane fusion. Viruses. 2021;13:1849. https://doi.org/10.3390/v13091849.
Article CAS PubMed PubMed Central Google Scholar
Haarr L, Shukla D, Rødahl E, Dal Canto MC, Spear PG. Transcription from the gene encoding the herpesvirus entry receptor nectin-1 (HveC) in nervous tissue of adult mouse. Virology. 2001;287:301–9. https://doi.org/10.1006/viro.2001.1041.
Article CAS PubMed Google Scholar
Richards AL, Sollars PJ, Pitts JD, Stults AM, Heldwein EE, Pickard GE, et al. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion. PLoS Pathog. 2017;13:e1006741. https://doi.org/10.1371/journal.ppat.1006741.
Article CAS PubMed PubMed Central Google Scholar
Smith GA. Navigating the cytoplasm: delivery of the alphaherpesvirus genome to the nucleus. Curr Issues Mol Biol. 2021;41:171–220. https://doi.org/10.21775/cimb.041.171.
Vitonne V, Diefenbach E, Triffet D, Douglas MW, Cunningham A, Diefenbach RJ. Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol. 2005;79:9566–71. https://doi.org/10.1128/JVI.79.15.9566-9571.2005.
Mettenleiter T. Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol. 2006;113:163–9. https://doi.org/10.1016/j.vetmic.2005.11.040.
Article CAS PubMed Google Scholar
Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci. 2003;28:294–304. https://doi.org/10.1016/S0968-0004(03)00088-4.
Article CAS PubMed Google Scholar
Dunn LEM, Birkenheuer CH, Dufour R, Baines JD. Immediate early proteins of herpes simplex virus transiently repress viral transcription before subsequent activation. J Virol. 2022;96:e0141622. https://doi.org/10.1128/jvi.01416-22.
Article CAS PubMed Google Scholar
Smith CA, Bates P, Rivera-Gonzalez R, Gu B, DeLuca NA. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB. J Virol. 1993;67:4676–87. https://doi.org/10.1128/JVI.67.8.4676-4687.1993.
Article CAS PubMed PubMed Central Google Scholar
Wagner LM, DeLuca NA. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription. PLoS One. 2013;8:e78242. https://doi.org/10.1371/journal.pone.0078242.
Article CAS PubMed PubMed Central Google Scholar
Everett RD, Freemont P, Saitoh H, Dasso M, Orr A, Kathoria M, et al. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol. 1998;72:6581–91. https://doi.org/10.1128/JVI.72.8.6581-6591.1998.
Article CAS PubMed PubMed Central Google Scholar
Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, Epstein AL. Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol. 2004;78:6744–57. https://doi.org/10.1128/JVI.78.13.6744-6757.2004.
Article CAS PubMed PubMed Central Google Scholar
Gu H, Liang Y, Mandel G, Roizman B. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci USA. 2005;102:7571–6. https://doi.org/10.1073/pnas.0502658102.
Article CAS PubMed PubMed Central Google Scholar
Gu H, Roizman B. Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci USA. 2007;104:17134–9. https://doi.org/10.1073/pnas.0707266104.
Article PubMed PubMed Central Google Scholar
McGregor F, Phelan A, Dunlop J, Clements JB. Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol. 1996;70:1931–40. https://doi.org/10.1128/JVI.70.3.1931-1940.1996.
Article CAS PubMed PubMed Central Google Scholar
Sandri-Goldin RM, Mendoza GE. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 1992;6:848–63. https://doi.org/10.1101/gad.6.5.848.
Article CAS PubMed Google Scholar
Sandri-Goldin RM. ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev. 1998;12:868–79. https://doi.org/10.1101/gad.12.6.868.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Hennig T, Whisnant AW, Whisnant AW, Erhard F, Prusty BK, et al. Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27. Nat Commun. 2020;11:293. https://doi.org/10.1038/s41467-019-14109-x.
Article CAS PubMed PubMed Central Google Scholar
Sedlackova L, Rice SA. Herpes simplex virus type 1 immediate-early protein ICP27 is required for efficient incorporation of ICP0 and ICP4 into virions. J Virol. 2008;82:268–77. https://doi.org/10.1128/JVI.01588-07.
Article CAS PubMed Google Scholar
Adlakha M, Livingston CM, Bezsonova I, Weller SK. The herpes simplex virus 1 immediate early protein ICP22 is a func
留言 (0)