Non-replicative herpes simplex virus genomic and amplicon vectors for gene therapy - an update

James C, Harfouche M, Welton NJ, Turner KM, Abu-Raddad LJ, Gottlieb SL, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98:315–29. https://doi.org/10.2471/BLT.19.237149.

Article  PubMed  PubMed Central  Google Scholar 

Steiner I, Kennedy PG. Herpes simplex virus latent infection in the nervous system. J Neurovirol. 1995;1:19–29. https://doi.org/10.3109/13550289509111007.

Article  CAS  PubMed  Google Scholar 

Knipe D. Herpes simplex viruses: mechanisms of lytic and latent infection. In: Howley PM, editor. Fields virology. 7th edn. Wolters Kluwer; 2021. pp. 235–96.

Manservigi R, Argnani R, Marconi P. HSV recombinant vectors for gene therapy. Open Virol J. 2010;4:123–56. https://doi.org/10.2174/1874357901004030123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lachmann R. Herpes simplex virus-based vectors. Int J Exp Pathol. 2004;85:177–90. https://doi.org/10.1111/j.0959-9673.2004.00383.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Epstein AL. Progress and prospects: biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther. 2009;16:709–15. https://doi.org/10.1038/gt.2009.42.

Article  CAS  PubMed  Google Scholar 

Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–8. https://doi.org/10.1016/S0140-6736(00)04638-9.

Article  CAS  PubMed  Google Scholar 

Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes simplex virus cell entry mechanisms: an update. Front Cell Infect Microbiol. 2021;10:617578. https://doi.org/10.3389/fcimb.2020.617578.

Article  PubMed  PubMed Central  Google Scholar 

Jambunathan N, Clark CM, Musarrat F, Chouljenko VN, Rudd J, Kousoulas KG. Two sides to every story: herpes simplex type-1 viral glycoproteins gB, gD, gH/gL, gK, and cellular receptors function as key players in membrane fusion. Viruses. 2021;13:1849. https://doi.org/10.3390/v13091849.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haarr L, Shukla D, Rødahl E, Dal Canto MC, Spear PG. Transcription from the gene encoding the herpesvirus entry receptor nectin-1 (HveC) in nervous tissue of adult mouse. Virology. 2001;287:301–9. https://doi.org/10.1006/viro.2001.1041.

Article  CAS  PubMed  Google Scholar 

Richards AL, Sollars PJ, Pitts JD, Stults AM, Heldwein EE, Pickard GE, et al. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion. PLoS Pathog. 2017;13:e1006741. https://doi.org/10.1371/journal.ppat.1006741.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith GA. Navigating the cytoplasm: delivery of the alphaherpesvirus genome to the nucleus. Curr Issues Mol Biol. 2021;41:171–220. https://doi.org/10.21775/cimb.041.171.

Article  PubMed  Google Scholar 

Vitonne V, Diefenbach E, Triffet D, Douglas MW, Cunningham A, Diefenbach RJ. Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol. 2005;79:9566–71. https://doi.org/10.1128/JVI.79.15.9566-9571.2005.

Article  CAS  Google Scholar 

Mettenleiter T. Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol. 2006;113:163–9. https://doi.org/10.1016/j.vetmic.2005.11.040.

Article  CAS  PubMed  Google Scholar 

Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci. 2003;28:294–304. https://doi.org/10.1016/S0968-0004(03)00088-4.

Article  CAS  PubMed  Google Scholar 

Dunn LEM, Birkenheuer CH, Dufour R, Baines JD. Immediate early proteins of herpes simplex virus transiently repress viral transcription before subsequent activation. J Virol. 2022;96:e0141622. https://doi.org/10.1128/jvi.01416-22.

Article  CAS  PubMed  Google Scholar 

Smith CA, Bates P, Rivera-Gonzalez R, Gu B, DeLuca NA. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB. J Virol. 1993;67:4676–87. https://doi.org/10.1128/JVI.67.8.4676-4687.1993.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner LM, DeLuca NA. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription. PLoS One. 2013;8:e78242. https://doi.org/10.1371/journal.pone.0078242.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Everett RD, Freemont P, Saitoh H, Dasso M, Orr A, Kathoria M, et al. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol. 1998;72:6581–91. https://doi.org/10.1128/JVI.72.8.6581-6591.1998.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, Epstein AL. Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol. 2004;78:6744–57. https://doi.org/10.1128/JVI.78.13.6744-6757.2004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu H, Liang Y, Mandel G, Roizman B. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci USA. 2005;102:7571–6. https://doi.org/10.1073/pnas.0502658102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu H, Roizman B. Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci USA. 2007;104:17134–9. https://doi.org/10.1073/pnas.0707266104.

Article  PubMed  PubMed Central  Google Scholar 

McGregor F, Phelan A, Dunlop J, Clements JB. Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol. 1996;70:1931–40. https://doi.org/10.1128/JVI.70.3.1931-1940.1996.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sandri-Goldin RM, Mendoza GE. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 1992;6:848–63. https://doi.org/10.1101/gad.6.5.848.

Article  CAS  PubMed  Google Scholar 

Sandri-Goldin RM. ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev. 1998;12:868–79. https://doi.org/10.1101/gad.12.6.868.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Hennig T, Whisnant AW, Whisnant AW, Erhard F, Prusty BK, et al. Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27. Nat Commun. 2020;11:293. https://doi.org/10.1038/s41467-019-14109-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sedlackova L, Rice SA. Herpes simplex virus type 1 immediate-early protein ICP27 is required for efficient incorporation of ICP0 and ICP4 into virions. J Virol. 2008;82:268–77. https://doi.org/10.1128/JVI.01588-07.

Article  CAS  PubMed  Google Scholar 

Adlakha M, Livingston CM, Bezsonova I, Weller SK. The herpes simplex virus 1 immediate early protein ICP22 is a func

留言 (0)

沒有登入
gif