The circRNA circSCAF8 promotes tumor growth and metastasis of gastric cancer via miR-1293/TIMP1signaling

Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev. 2020;39:1179–203.

Article  PubMed  Google Scholar 

Wong MCS, Huang J, Chan PSF, Choi P, Lao XQ, Chan SM, et al. Global Incidence and Mortality of Gastric Cancer, 1980-2018. JAMA Netw Open. 2021;4:e2118457.

Article  PubMed  Google Scholar 

Yuan L, Xu Z-Y, Ruan S-M, Mo S, Qin J-J, Cheng X-D. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer. 2020;19:96.

Article  CAS  PubMed  Google Scholar 

Li Y, Feng A, Zheng S, Chen C, Lyu J. Recent estimates and predictions of 5-year survival in patients with gastric cancer: a model-based period analysis. Cancer Control. 2022;29:10732748221099227.

Article  PubMed  Google Scholar 

Thrumurthy SG, Chaudry MA, Hochhauser D, Mughal M. The diagnosis and management of gastric cancer. BMJ. 2013;347:f6367.

Article  PubMed  Google Scholar 

Collatuzzo G, Pelucchi C, Negri E, López-Carrillo L, Tsugane S, Hidaka A, et al. Exploring the interactions between Helicobacter pylori (Hp) infection and other risk factors of gastric cancer: A pooled analysis in the Stomach cancer Pooling (StoP) Project. Int J Cancer. 2021;149:1228–38.

Article  CAS  PubMed  Google Scholar 

Liu T, Zhu J, Du W, Ning W, Zhang Y, Zeng Y, et al. AKT2 drives cancer progression and is negatively modulated by miR-124 in human lung adenocarcinoma. Respir Res. 2020;21:227.

Article  CAS  PubMed  Google Scholar 

Miliotis C, Slack FJ. miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett. 2021;518:115–26.

Article  CAS  PubMed  Google Scholar 

Zhou T, Lin K, Nie J, Pan B, He B, Pan Y, et al. LncRNA SPINT1-AS1 promotes breast cancer proliferation and metastasis by sponging let-7 a/b/i-5p. Pathol Res Pract. 2021;217:153268.

Article  CAS  PubMed  Google Scholar 

Dong R, Ma XK, Chen LL, Yang L. Increased complexity of circRNA expression during species evolution. RNA Biol. 2017;14:1064–74.

Article  PubMed  Google Scholar 

Jiang H, Tian Y, Zhao X, Zhang L, Wu Z. A circular RNA derived from FAT atypical cadherin 3 promotes lung cancer progression via forming a regulatory loop with oncogenic ELAV like RNA binding protein 1. J Biochem. 2022;171:519–28.

Article  CAS  PubMed  Google Scholar 

Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58:870–85.

Article  CAS  PubMed  Google Scholar 

Hou L-D, Zhang J. Circular RNAs: An emerging type of RNA in cancer. Int J Immunopathol Pharmacol. 2017;30:1–6.

Article  CAS  PubMed  Google Scholar 

Zhu CL, Sha X, Wang Y, Li J, Zhang MY, Guo ZY, et al. Circular RNA hsa_circ_0007142 Is Upregulated and Targets miR-103a-2-5p in Colorectal Cancer. J Oncol. 2019;2019:9836819.

Article  PubMed  Google Scholar 

Wang R, Zhang S, Chen X, Li N, Li J, Jia R, et al. CircNT5E Acts as a Sponge of miR-422a to Promote Glioblastoma Tumorigenesis. Cancer Res. 2018;78:4812–25.

Article  CAS  PubMed  Google Scholar 

Wong CH, Lou UK, Li Y, Chan SL, Tong JHM, To KF, et al. CircFOXK2 promotes growth and metastasis of pancreatic ductal Adenocarcinoma by complexing with RNA Binding proteins and sponging MiR-942. Cancer Res. 2020;80:2138–49.

Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19:218.

Article  CAS  PubMed  Google Scholar 

Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer. 2020;19:138.

Article  CAS  PubMed  Google Scholar 

Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 2020;19:13.

Article  CAS  PubMed  Google Scholar 

Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res. 2017;7:1566–76.

CAS  PubMed  Google Scholar 

Li J, Chen K, Dong X, Xu Y, Sun Q, Wang H, et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 2022;55:e13157.

Article  CAS  PubMed  Google Scholar 

Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci USA. 1996;93:6975–80.

Article  CAS  PubMed  Google Scholar 

Mccracken S, Fong N, Rosonina E, Yankulov K, Brothers G, Siderovski D, et al. 5’-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 1997;11:3306–18.

Article  CAS  PubMed  Google Scholar 

Hirose Y, Ohkuma Y. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem. 2007;141:601–8.

Article  CAS  PubMed  Google Scholar 

Descostes N, Heidemann M, Spinelli L, Schüller R, Maqbool MA, Fenouil R, et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. Elife. 2014;3:e02105.

Article  PubMed  Google Scholar 

Etchegaray J-P, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, et al. The Histone Deacetylase SIRT6 restrains transcription elongation via promoter-proximal pausing. Mol Cell. 2019;75:683–99.

Becker R, Loll B, Meinhart A. Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II. J Biol Chem. 2008;283:22659–69.

Article  CAS  PubMed  Google Scholar 

Gregersen LH, Mitter R, Ugalde AP, Nojima T, Proudfoot NJ, Agami R, et al. SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. Cell. 2019;177:1797–813.e18.

Article  CAS  PubMed  Google Scholar 

Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, et al. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell. 2017;68:940–54.e3.

Article  CAS  PubMed  Google Scholar 

Li P, Ma Y, Wang Y, Chen T, Wang H, Chu H, et al. Identification of miR-1293 potential target gene: TIMP-1. Mol Cell Biochem. 2013;384:1–6.

Article  CAS  PubMed  Google Scholar 

Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, et al. The Circular RNA circPRKCI Promotes Tumor Growth in Lung Adenocarcinoma. Cancer Res. 2018;78:2839–51.

Article  CAS  PubMed  Google Scholar 

Zhu Z, Rong Z, Luo Z, Yu Z, Zhang J, Qiu Z, et al. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis. Mol Cancer. 2019;18:126.

Article  PubMed  Google Scholar 

Takagawa Y, Gen Y, Muramatsu T, Tanimoto K, Inoue J, Harada H, et al. miR-1293, a Candidate for miRNA-Based Cancer Therapeutics, Simultaneously Targets BRD4 and the DNA Repair Pathway. Mol Ther. 2020;28:1494–1505.

Liu XL, Pan WG, Li KL, Mao YJ, Liu SD, Zhang RM. miR-1293 suppresses tumor malignancy by targeting Hydrocyanic Oxidase 2: Therapeutic potential of a miR-1293/Hydrocyanic Oxidase 2 axis in renal cell carcinoma. Cancer Biother Radiopharm. 2020;35:377–86.

Wang T, Huang J, Chen G, Fu J, Li T, Zou X, et al. miR-1293 suppresses osteosarcoma progression by modulating drug sensitivity in response to cisplatin treatment. Int Immunopharmacol. 2024;130:111702.

Article  CAS  PubMed  Google Scholar 

Omar OM, Soutto M, Bhat NS, Bhat AA, Lu H, Chen Z, et al. TFF1 antagonizes TIMP-1 mediated proliferative functions in gastric cancer. Mol Carcinog. 2018;57:1577–87.

留言 (0)

沒有登入
gif