Probiotic-derived extracellular vesicles alleviate AFB1-induced intestinal injury by modulating the gut microbiota and AHR activation

Zhang N-Y, Qi M, Zhao L, Zhu M-K, Guo J, Liu J, Gu C-Q, Rajput SA, Krumm CS, Qi D-S, Sun L-H. Curcumin prevents aflatoxin B₁ hepatoxicity by inhibition of cytochrome P450 isozymes in Chick Liver. Toxins 2016;8.

Cheng L, Qin Y, Hu X, Ren L, Zhang C, Wang X, Wang W, Zhang Z, Hao J, Guo M, et al. Melatonin protects in vitro matured porcine oocytes from toxicity of aflatoxin B1. J Pineal Res. 2019;66:e12543.

Article  PubMed  Google Scholar 

Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Discovering the Protective effects of Resveratrol on aflatoxin B1-Induced toxicity: a whole transcriptomic study in a bovine hepatocyte cell line. Antioxidants; 2021. p. 10. (Basel, Switzerland).

Pang VF, Chiang C-F, Chang C-C. The in vitro effects of aflatoxin B1 on physiological functions of swine alveolar macrophages. Veterinary Med Sci. 2020;6:919–25.

Article  CAS  Google Scholar 

Yang C, Song G, Lim W. Effects of mycotoxin-contaminated feed on farm animals. J Hazard Mater. 2020;389:122087.

Article  PubMed  CAS  Google Scholar 

Liew W-P-P, Mohd-Redzwan S. Mycotoxin: its impact on Gut Health and Microbiota. Front Cell Infect Microbiol. 2018;8:60.

Article  PubMed  PubMed Central  Google Scholar 

Akbari P, Braber S, Varasteh S, Alizadeh A, Garssen J, Fink-Gremmels J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch Toxicol. 2017;91:1007–29.

Article  PubMed  CAS  Google Scholar 

Taranu I, Marin DE, Palade M, Pistol GC, Chedea VS, Gras MA, Rotar C. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon: Official J Int Soc Toxinology. 2019;162:24–31.

Article  CAS  Google Scholar 

Contreras BG, De Vuyst L, Devreese B, Busanyova K, Raymaeckers J, Bosman F, Sablon E, Vandamme EJ. Isolation, purification, and amino acid sequence of lactobin A, one of the two bacteriocins produced by Lactobacillus amylovorus LMG P-13139. Appl Environ Microbiol. 1997;63:13–20.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu Z, He H, Zhang S, Guo T, Kong J. Characterization of Feruloyl Esterases produced by the four Lactobacillus species: L. Amylovorus, L. Acidophilus, L. Farciminis and L. Fermentum, isolated from Ensiled Corn Stover. Front Microbiol. 2017;8:941.

Article  PubMed  PubMed Central  Google Scholar 

Sunmola AA, Ogbole OO, Faleye TOC, Adetoye A, Adeniji JA, Ayeni FA. Antiviral potentials of Lactobacillus plantarum, Lactobacillus amylovorus, and Enterococcus hirae against selected Enterovirus. Folia Microbiol. 2019;64:257–64.

Article  CAS  Google Scholar 

Finamore A, Roselli M, Imbinto A, Seeboth J, Oswald IP, Mengheri E. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic Escherichia coli via modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants. PLoS ONE. 2014;9:e94891.

Article  PubMed  PubMed Central  Google Scholar 

Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK, Toh WS. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019;89:252–64.

Article  PubMed  CAS  Google Scholar 

Margolis L, Sadovsky Y. The biology of extracellular vesicles: the known unknowns. PLoS Biol. 2019;17:e3000363.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rabiei N, Ahmadi Badi S, Ettehad Marvasti F, Nejad Sattari T, Vaziri F, Siadat SD. Induction effects of Faecalibacterium prausnitzii and its extracellular vesicles on toll-like receptor signaling pathway gene expression and cytokine level in human intestinal epithelial cells. Cytokine. 2019;121:154718.

Article  PubMed  CAS  Google Scholar 

Liang L, Yang C, Liu L, Mai G, Li H, Wu L, Jin M, Chen Y. Commensal bacteria-derived extracellular vesicles suppress ulcerative colitis through regulating the macrophages polarization and remodeling the gut microbiota. Microb Cell Fact. 2022;21:88.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Macia L, Nanan R, Hosseini-Beheshti E, Grau GE. Host- and microbiota-derived extracellular vesicles, Immune function, and Disease Development. Int J Mol Sci. 2019;21.

Shen Q, Huang Z, Ma L, Yao J, Luo T, Zhao Y, Xiao Y, Jin Y. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes. 2022;14:2128604.

Article  PubMed  PubMed Central  Google Scholar 

Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y, Ye J, Fang D, Wu J, Jiang X, et al. Administration of Akkermansia muciniphila ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in mice. Front Microbiol. 2019;10:2259.

Article  PubMed  PubMed Central  Google Scholar 

Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, Hiwale AA, Saiyed T, Patel P, Vijay-Kumar M, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019;10:89.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl Hydrocarbon receptor (AHR) as a potential target for the Control of Intestinal Inflammation: insights from an Immune and Bacteria sensor receptor. Clin Rev Allergy Immunol. 2020;59:382–90.

Article  PubMed  CAS  Google Scholar 

Sun M, Ma N, He T, Johnston LJ, Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit Rev Food Sci Nutr. 2020;60:1760–8.

Article  PubMed  CAS  Google Scholar 

Lin L, Liu Y, Chen L, Dai Y, Xia Y. Discovery of Norisoboldine Analogue III11 as a Novel and Potent Aryl Hydrocarbon receptor agonist for the treatment of Ulcerative Colitis. J Med Chem. 2023;66:6869–88.

Article  PubMed  CAS  Google Scholar 

Wang J, Wang P, Tian H, Tian F, Zhang Y, Zhang L, Gao X, Wang X. Aryl hydrocarbon receptor/IL-22/Stat3 signaling pathway is involved in the modulation of intestinal mucosa antimicrobial molecules by commensal microbiota in mice. Innate Immun. 2018;24:297–306.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: a strategy towards gut inflammation. Redox Biol. 2023;61:102622.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2020;117:19376–87.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Geng S, Cheng S, Li Y, Wen Z, Ma X, Jiang X, Wang Y, Han X. Faecal microbiota transplantation reduces susceptibility to Epithelial Injury and modulates Tryptophan Metabolism of the Microbial Community in a Piglet Model. Volume 12. Journal of Crohn’s & Colitis; 2018. pp. 1359–74.

Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–61.

Article  PubMed  CAS  Google Scholar 

Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. 2011;13:144–51.

Article  PubMed  PubMed Central  Google Scholar 

Qiu J, Heller JJ, Guo X, Chen Z-mE, Fish K, Fu Y-X, Zhou L. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity. 2012;36.

Grau KR, Zhu S, Peterson ST, Helm EW, Philip D, Phillips M, Hernandez A, Turula H, Frasse P, Graziano VR, et al. The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nat Microbiol. 2020;5:84–92.

Article  PubMed  CAS  Google Scholar 

Shi Z, Li X, Zhang Y-M, Zhou Y-Y, Gan X-F, Fan Q-Y, He C-Q, Shi T, Zhang S-Y. Constitutive androstane receptor (CAR) mediates pyrene-induced inflammatory responses in mouse liver, with increased serum amyloid A proteins and Th17 cells. Br J Pharmacol. 2022;179:5209–21.

Article  PubMed  CAS  Google Scholar 

Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013;57:523–35.

Article  PubMed 

留言 (0)

沒有登入
gif