Irradiated whole cell Chlamydia vaccine confers significant protection in a murine genital tract challenge model

Organization, W. H. WHO alliance for the global elimination of trachoma by 2020: progress report on elimination of trachoma, 2018. Wkly. Epidemiol. Rec. 94, 317–328 (2019).

Google Scholar 

Centers for Disease Control and Prevention (ed) Sexually Transmitted Disease Surveillance 2019 (CDC, 2021).

World Health Organization (ed) Report on Global Sexually Transmitted Infection Surveillance 2018 (WHO, 2018).

Cilloniz, C. et al. Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax 66, 340–346 (2011).

Article  PubMed  Google Scholar 

Kreisel, K. M., Weston, E. J., St Cyr, S. B. & Spicknall, I. H. Estimates of the prevalence and incidence Of Chlamydia and Gonorrhea among US men and women, 2018. Sex. Transm. Dis. 48, 222–231 (2021).

Article  PubMed  PubMed Central  Google Scholar 

CDC (ed) Sexually Transmitted Disease Surveillance, 2022 (CDC, 2024).

Phillips, S., Quigley, B. L. & Timms, P. Seventy years of Chlamydia vaccine research—limitations of the past and directions for the future. Front. Microbiol. 10, 70 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Packiam, M., Weinrick, B., Jacobs, W. R. Jr. & Maurelli, A. T. Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc. Natl. Acad. Sci. USA 112, 11660–11665 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thakur, A., Mikkelsen, H. & Jungersen, G. Intracellular pathogens: host immunity and microbial persistence strategies. J. Immunol. Res. 2019, 1356540 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yang, C. et al. Chlamydia trachomatis lipopolysaccharide evades the canonical and noncanonical inflammatory pathways to subvert innate immunity. mBio. https://doi.org/10.1128/mBio.00595-19 (2019).

Ingalls, R. R. et al. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63, 3125–3130 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bas, S. et al. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J. Immunol. 180, 1158–1168 (2008).

Article  CAS  PubMed  Google Scholar 

Kosma, P. Chlamydial lipopolysaccharide. Biochim. Biophys. Acta 1455, 387–402 (1999).

Article  CAS  PubMed  Google Scholar 

Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014).

Article  CAS  PubMed  Google Scholar 

Brockett, M. R. & Liechti, G. W. Persistence alters the interaction between Chlamydia trachomatis and its host cell. Infect. Immun. https://doi.org/10.1128/IAI.00685-20 (2021).

Singh, R., Liechti, G., Slade, J. A. & Maurelli, A. T. Chlamydia trachomatis oligopeptide transporter performs dual functions of oligopeptide transport and peptidoglycan recycling. Infect. Immun. https://doi.org/10.1128/IAI.00086-20 (2020).

Sarkar, A. et al. Mechanisms of apoptosis inhibition in Chlamydia pneumoniae-infected neutrophils. Int. J. Med Microbiol. 305, 493–500 (2015).

Article  CAS  PubMed  Google Scholar 

van Zandbergen, G. et al. Chlamydia pneumoniae multiply in neutrophil granulocytes and delay their spontaneous apoptosis. J. Immunol. 172, 1768–1776 (2004).

Article  PubMed  Google Scholar 

Pirbhai, M., Dong, F., Zhong, Y., Pan, K. Z. & Zhong, G. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J. Biol. Chem. 281, 31495–31501 (2006).

CAS  PubMed  Google Scholar 

Fischer, S. F. et al. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J. Exp. Med. 200, 905–916 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong, F. et al. Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect. Immun. 73, 1861–1864 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subbarayal, P. et al. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog. 11, e1004846 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Zhong, G., Fan, T. & Liu, L. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J. Exp. Med. 189, 1931–1938 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong, G., Liu, L., Fan, T., Fan, P. & Ji, H. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. J. Exp. Med. 191, 1525–1534 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caspar-Bauguil, S. et al. Chlamydia pneumoniae induces interleukin-10 production that down-regulates major histocompatibility complex class I expression. J. Infect. Dis. 182, 1394–1401 (2000).

Article  CAS  PubMed  Google Scholar 

Brunham, R. C. & Rey-Ladino, J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat. Rev. Immunol. 5, 149–161 (2005).

Article  CAS  PubMed  Google Scholar 

Vasilevsky, S., Greub, G., Nardelli-Haefliger, D. & Baud, D. Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin. Microbiol. Rev. 27, 346–370 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Rixon, J. A., Depew, C. E. & McSorley, S. J. Th1 cells are dispensable for primary clearance of Chlamydia from the female reproductive tract of mice. PLoS Pathog. 18, e1010333 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rixon, J. A. et al. Elimination of Chlamydia muridarum from the female reproductive tract is IL-12p40 dependent, but independent of Th1 and Th2 cells. PLoS Pathog. 20, e1011914 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batteiger, B. E., Xu, F., Johnson, R. E. & Rekart, M. L. Protective immunity to Chlamydia trachomatis genital infection: evidence from human studies. J. Infect. Dis. 201, S178–S189 (2010).

Article  CAS  PubMed  Google Scholar 

Pal, S., Fielder, T. J., Peterson, E. M. & de la Maza, L. M. Protection against infertility in a BALB/c mouse salpingitis model by intranasal immunization with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect. Immun. 62, 3354–3362 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal, S., Peterson, E. M. & de la Maza, L. M. Induction of protective immunity against a Chlamydia trachomatis genital infection in three genetically distinct strains of mice. Immunology 110, 368–375 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kari, L. et al. A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. J. Exp. Med. 208, 2217–2223 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal, S., Rangel, J., Peterson, E. M. & de la Maza, L. M. Immunogenic and protective ability of the two developmental forms of Chlamydiae in a mouse model of infertility. Vaccine 18, 752–761 (1999).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Induction of transmucosal protection by oral vaccination with an attenuated chlamydia. Infect. Immun. 91, e0004323 (2023).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif