Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia

Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature. 2004;432:625–30.

Article  PubMed  Google Scholar 

Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386:488–93.

Article  PubMed  Google Scholar 

Zambidis ET, Park TS, Yu W, Tam A, Levine M, Yuan X, et al. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood. 2008;112:3601–14.

Article  PubMed  PubMed Central  Google Scholar 

Vargas-Valderrama A, Ponsen AC, Le Gall M, Clay D, Jacques S, Manoliu T, et al. Endothelial and hematopoietic hPSCs differentiation via a hematoendothelial progenitor. Stem Cell Res Ther. 2022;13:254.

Article  PubMed  PubMed Central  Google Scholar 

Biben C, Weber TS, Potts KS, Choi J, Miles DC, Carmagnac A, et al. In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis. Nat Commun. 2023;14:41.

Article  PubMed  PubMed Central  Google Scholar 

Jones EA, Yuan L, Breant C, Watts RJ, Eichmann A. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development. 2008;135:2479–88.

Article  PubMed  Google Scholar 

Chiang IK, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, et al. SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development. 2017;144:2629–39.

Article  PubMed  PubMed Central  Google Scholar 

You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435:98–104.

Article  PubMed  Google Scholar 

Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science (New York, NY). 1997;277:242–245.

Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456:643–7.

Article  PubMed  Google Scholar 

Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–13.

Article  PubMed  PubMed Central  Google Scholar 

Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. cell stem cell. 2008;3:625–36.

Article  PubMed  PubMed Central  Google Scholar 

Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464:116–20.

Article  PubMed  Google Scholar 

Jaffredo T, Gautier R, Brajeul V, Dieterlen-Lievre F. Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev Biol. 2000;224:204–14.

Article  PubMed  Google Scholar 

Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897–906.

Article  PubMed  Google Scholar 

Wittamer V, Bertrand JY. Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system? Cell Mol Life Sci. 2020;77:4081–91.

Article  PubMed  PubMed Central  Google Scholar 

Yamane T. Mouse yolk sac hematopoiesis. Front Cell Dev Biol. 2018;6:80.

Article  PubMed  PubMed Central  Google Scholar 

Rybtsov S, Sobiesiak M, Taoudi S, Souilhol C, Senserrich J, Liakhovitskaia A, et al. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J Exp Med. 2011;208:1305–15.

Article  PubMed  PubMed Central  Google Scholar 

Taoudi S, Morrison AM, Inoue H, Gribi R, Ure J, Medvinsky A. Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver. Development. 2005;132:4179–91.

Article  PubMed  Google Scholar 

Taoudi S, Gonneau C, Moore K, Sheridan JM, Blackburn CC, Taylor E, et al. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+ pre-definitive HSCs. cell stem cell. 2008;3:99–108.

Article  PubMed  Google Scholar 

Ganuza M, Hadland B, Chabot A, Li C, Kang G, Bernstein I, et al. Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential ex vivo. Exp Hematol. 2017;51:25–35 e6.

Article  PubMed  PubMed Central  Google Scholar 

Marcelo KL, Sills TM, Coskun S, Vasavada H, Sanglikar S, Goldie LC, et al. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Developmental cell. 2013;27:504–15.

Article  PubMed  PubMed Central  Google Scholar 

Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci USA. 2005;102:134–9.

Article  PubMed  Google Scholar 

Zhu Q, Gao P, Tober J, Bennett L, Chen C, Uzun Y, et al. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood. 2020;136:845–56.

Article  PubMed  PubMed Central  Google Scholar 

Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457:887–91.

Article  PubMed  PubMed Central  Google Scholar 

Tavian M, Hallais MF, Peault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development. 1999;126:793–803.

Article  PubMed  Google Scholar 

Tavian M, Coulombel L, Luton D, Clemente HS, Dieterlen-Lievre F, Peault B. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood. 1996;87:67–72.

Article  PubMed  Google Scholar 

Labastie MC, Cortes F, Romeo PH, Dulac C, Peault B. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood. 1998;92:3624–35.

Article  PubMed  Google Scholar 

Tavian M, Robin C, Coulombel L, Peault B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity. 2001;15:487–95.

Article  PubMed  Google Scholar 

Wu X, Lensch MW, Wylie-Sears J, Daley GQ, Bischoff J. Hemogenic endothelial progenitor cells isolated from human umbilical cord blood. Stem cells (Dayt, Ohio). 2007;25:2770–6.

Article  Google Scholar 

Guibentif C, Ronn RE, Boiers C, Lang S, Saxena S, Soneji S, et al. Single-cell analysis identifies distinct stages of human endothelial-to-hematopoietic transition. Cell Rep. 2017;19:10–9.

Article  PubMed  Google Scholar 

Iwasaki H, Arai F, Kubota Y, Dahl M, Suda T. Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood. 2010;116:544–53.

Article  PubMed  Google Scholar 

Shao L, Paik NY, Sanborn MA, Bandara T, Vijaykumar A, Sottoriva K, et al. Hematopoietic Jagged1 is a fetal liver niche factor required for functional maturation and engraftment of fetal hematopoietic stem cells. Proc Natl Acad Sci USA. 2023;120:e2210058120.

Article  PubMed  PubMed Central  Google Scholar 

Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A.et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science (New York, NY). 2016;351:176–80.

Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, et al. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun. 2022;13:1327.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif