Tojo A, Kinugasa S, Fujita T, Wilcox CS. A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes. 2016;9:1–10. https://doi.org/10.2147/DMSO.S91245.
Article CAS PubMed PubMed Central Google Scholar
Mezzano S, Droguett A, Burgos ME, Ardiles LG, Flores CA, Aros CA, Caorsi I, Vio CP, Ruiz-Ortega M, Egido J. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int. 2003;64:S64–70. https://doi.org/10.1046/J.1523-1755.64.S86.12.X.
Kobori H, Kamiyama M, Harrison-Bernard LM, Navar LG. Cardinal role of the intrarenal renin-angiotensin system in the pathogenesis of diabetic nephropathy. J Investig Med. 2013;61:256–64. https://doi.org/10.2310/JIM.0b013e31827c28bb.
Article CAS PubMed PubMed Central Google Scholar
Matavelli LC, Huang J, Siragy HM. (Pro)renin receptor contributes to diabetic nephropathy by enhancing renal inflammation. Clin Exp Pharmacol Physiol. 2010;37:277–82. https://doi.org/10.1111/j.1440-1681.2009.05292.x.
Article CAS PubMed Google Scholar
Siragy HM, Huang J. Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp Physiol. 2008;93:709–14. https://doi.org/10.1113/expphysiol.2007.040550.
Article CAS PubMed Google Scholar
Tang J, Wysocki J, Ye M, Valles PG, Rein J, Shirazi M, Bader M, Gomez RA, Sequeira-Lopez MS, Afkarian M, et al. Urinary renin in patients and mice with diabetic kidney disease. Hypertension. 2019;74:83–94. https://doi.org/10.1161/HYPERTENSIONAHA.119.12873.
Article CAS PubMed Google Scholar
Kang JJ, Toma I, Sipos A, Meer EJ, Vargas SL, Peti-Peterdi J. The collecting duct is the major source of prorenin in diabetes. Hypertension. 2008;51:1597–604. https://doi.org/10.1161/HYPERTENSIONAHA.107.107268.
Article CAS PubMed Google Scholar
Gogulamudi VR, Arita DY, Bourgeois CRT, Jorgensen J, He J, Wimley WC, Satou R, Gonzalez AA, Prieto MC. High glucose induces trafficking of prorenin receptor and stimulates profibrotic factors in the collecting duct. Sci Rep. 2021;11:13815. https://doi.org/10.1038/s41598-021-93296-4.
Article CAS PubMed PubMed Central Google Scholar
Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, Nabi AHMN, Nishiyama A, Sugaya T, Hayashi M, et al. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2006;17:1950–61. https://doi.org/10.1681/ASN.2006010029.
Article CAS PubMed Google Scholar
Li C, Matavelli LC, Akhtar S, Siragy HM. (Pro)renin receptor contributes to renal mitochondria dysfunction, apoptosis and fibrosis in diabetic mice. Sci Rep. 2019;9:11667. https://doi.org/10.1038/s41598-019-47055-1.
Article CAS PubMed PubMed Central Google Scholar
Nurun NAHM, Uddin NM, Nakagawa T, Iwata H, Ichihara A, Inagami T, Suzuki F. Role of “handle” region of prorenin prosegment in the non-proteolytic activation of prorenin by binding to membrane anchored (pro)renin receptor. Front Biosci-Landmrk. 2007;12:4810–7. https://doi.org/10.2741/2429.
Prieto MC, Reverte V, Mamenko M, Kuczeriszka M, Veiras LC, Rosales CB, McLellan M, Gentile O, Jensen VB, Ichihara A, et al. Collecting duct prorenin receptor knockout reduces renal function, increases sodium excretion, and mitigates renal responses in ANG II-induced hypertensive mice. Am J Physiol Renal Physiol. 2017;313:F1243–53. https://doi.org/10.1152/ajprenal.00152.2017.
Article CAS PubMed PubMed Central Google Scholar
Clavreul N, Sansilvestri-Morel P, Magard D, Verbeuren TJ, Rupin A. (Pro)renin promotes fibrosis gene expression in HEK cells through a Nox4-dependent mechanism. Am J Physiol Renal Physiol. 2011;300:F1310-1318. https://doi.org/10.1152/ajprenal.00119.2010.
Article CAS PubMed Google Scholar
Gonzalez AA, Zamora L, Reyes-Martinez C, Salinas-Parra N, Roldan N, Cuevas CA, Figueroa S, Gonzalez-Vergara A, Prieto MC. (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin Exp Pharmacol Physiol. 2017;44:1134–44. https://doi.org/10.1111/1440-1681.12813.
Article CAS PubMed PubMed Central Google Scholar
Reyes-Martinez C, Nguyen QM, Kassan M, Gonzalez AA. (Pro)renin receptor-dependent induction of profibrotic factors is mediated by COX-2/EP4/NOX-4/Smad pathway in collecting duct cells. Front Pharmacol. 2019;10:803. https://doi.org/10.3389/fphar.2019.00803.
Article CAS PubMed PubMed Central Google Scholar
Li Z, Zhou L, Wang Y, Miao J, Hong X, Hou FF, Liu Y. (Pro)renin receptor is an amplifier of Wnt/beta-catenin signaling in kidney injury and fibrosis. J Am Soc Nephrol. 2017;28:2393–408. https://doi.org/10.1681/ASN.2016070811.
Article CAS PubMed PubMed Central Google Scholar
Gonzalez AA, Luffman C, Bourgeois CR, Vio CP, Prieto MC. Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (Pro)renin receptor in rat renal inner medullary cells. Hypertension. 2013;61:443–9. https://doi.org/10.1161/HYPERTENSIONAHA.112.196303.
Article CAS PubMed Google Scholar
Yamamoto T, Noble NA, Miller DE, Border WA. Sustained expression of TGF-beta 1 underlies development of progressive kidney fibrosis. Kidney Int. 1994;45:916–27.
Article CAS PubMed Google Scholar
Casado-Barragan F, Lazcano-Paez G, Larenas PE, Aguirre-Delgadillo M, Olivares-Aravena F, Witto-Oyarce D, Nunez-Allimant C, Silva K, Nguyen QM, Cardenas P, et al. Increased renal medullary NOX-4 in female but not male mice during the early phase of type 1 diabetes: potential role of ros in upregulation of tgf-beta1 and fibronectin in collecting duct cells. Antioxidants (Basel). 2023. https://doi.org/10.3390/antiox12030729.
Du XY, Xiang DC, Gao P, Peng H, Liu YL. Inhibition of (Pro)renin receptor-mediated oxidative stress alleviates doxorubicin-induced heart failure. Front Oncol. 2022;12: 874852. https://doi.org/10.3389/fonc.2022.874852.
Article CAS PubMed PubMed Central Google Scholar
Peng H, Li W, Seth DM, Nair AR, Francis J, Feng Y. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells. PLoS ONE. 2013;8: e58339. https://doi.org/10.1371/journal.pone.0058339.
Article CAS PubMed PubMed Central Google Scholar
Liu FY, Liu XY, Zhang LJ, Cheng YP, Jiang YN. Binding of prorenin to (pro)renin receptor induces the proliferation of human umbilical artery smooth muscle cells via ROS generation and ERK1/2 activation. J Renin-Angio-Aldo S. 2014;15:99–108. https://doi.org/10.1177/1470320314525215.
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch. 2020;472:1345–70. https://doi.org/10.1007/s00424-020-02361-w.
Article CAS PubMed PubMed Central Google Scholar
Linden KC, DeHaan CL, Zhang Y, Glowacka S, Cox AJ, Kelly DJ, Rogers S. Renal expression and localization of the facilitative glucose transporters GLUT1 and GLUT12 in animal models of hypertension and diabetic nephropathy. Am J Physiol-Renal. 2006;290:F205–13. https://doi.org/10.1152/ajprenal.00237.2004.
Sedzikowska A, Szablewski L. Human glucose transporters in renal glucose homeostasis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222413522.
Article PubMed PubMed Central Google Scholar
Thorens B, Lodish HF, Brown D. Differential localization of two glucose transporter isoforms in rat kidney. Am J Physiol. 1990;259:C286-294. https://doi.org/10.1152/ajpcell.1990.259.2.C286.
留言 (0)