Meclozine and growth hormone ameliorate bone length and quality in experimental models of achondroplasia

Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, Winokur ST, Wasmuth JJ (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342

Article  CAS  PubMed  Google Scholar 

Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254

Article  CAS  PubMed  Google Scholar 

Savarirayan R, Ireland P, Irving M, Thompson D, Alves I et al (2022) International Consensus Statement on the diagnosis, multidisciplinary management and lifelong care of individuals with achondroplasia. Nat Rev Endocrinol 18:173–189

Article  PubMed  Google Scholar 

Kitoh H, Matsushita M, Mishima K, Kamiya Y, Sawamura K (2022) Disease-specific complications and multidisciplinary interventions in achondroplasia. J Bone Miner Metab 40:189–195

Article  CAS  PubMed  Google Scholar 

Savarirayan R, Tofts L, Irving M, Wilcox WR, Bacino CA et al (2021) Safe and persistent growth-promoting effects of vosoritide in children with achondroplasia: 2-year results from an open-label, phase 3 extension study. Genet Med 23:2443–2447

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savarirayan R, Wilcox WR, Harmatz P, Phillips J 3rd, Polgreen LE et al (2024) Vosoritide therapy in children with achondroplasia aged 3–59 months: a multinational, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Child Adolesc Health 8:40–50

Article  CAS  PubMed  Google Scholar 

Matsushita M, Kitoh H, Ohkawara B, Mishima K, Kaneko H, Ito M, Masuda A, Ishiguro N, Ohno K (2013) Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS ONE 8:e81569

Article  PubMed  PubMed Central  Google Scholar 

Takemoto G, Matsushita M, Okamoto T, Ito T, Matsuura Y, Takashima C, Chen-Yoshikawa TF, Ebi H, Imagama S, Kitoh H, Ohno K, Hosono Y (2022) Meclozine attenuates the MARK pathway in mammalian chondrocytes and ameliorates FGF2-induced bone hyperossification in larval zebrafish. Front Cell Dev Biol 9:694018

Article  PubMed  PubMed Central  Google Scholar 

Matsushita M, Hasegawa S, Kitoh H, Mori K, Ohkawara B, Yasoda A, Masuda A, Ishiguro N, Ohno K (2015) Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene. Endocrinology 156:548–554

Article  PubMed  Google Scholar 

Matsushita M, Esaki R, Mishima K, Ishiguro N, Ohno K, Kitoh H (2017) Clinical dosage of meclozine promotes longitudinal bone growth, bone volume, and trabecular bone quality in transgenic mice with achondroplasia. Sci Rep 7:7371

Article  PubMed  PubMed Central  Google Scholar 

Funahashi H, Matsushita M, Esaki R, Mishima K, Ohkawara B, Kamiya Y, Takegami Y, Ohno K, Kitoh H, Imagama S (2024) Long-term oral meclozine administration improves survival rate and spinal canal stenosis during postnatal growth in a mouse model of achondroplasia in both sexes. JBMR Plus 8:ziae018

Article  PubMed  PubMed Central  Google Scholar 

Kitoh H, Matsushita M, Mishima K, Nagata T, Kamiya Y, Ueda K, Kuwatsuka Y, Morikawa H, Nakai Y, Ishiguro N (2020) Pharmacokinetics and safety after once and twice a day doses of meclizine hydrochloride administered to children with achondroplasia. PLoS ONE 15:e0229639

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsushita M, Kitoh H, Mishima K, Kamiya Y, Kato D, Takemoto G, Sawamura K, Ueno S, Yasuhiro N, Nishida K, Imagama S (2023) Phase 1b study on the repurposing of meclizine hydrochloride for children with achondroplasia. PLoS ONE 18:e0283425

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixit M, Poudel SB, Yakar S (2021) Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 519:111052

Article  CAS  PubMed  Google Scholar 

Goeddel DV, Heyneker HL, Hozumi T, Arentzen R, Itakura K, Yansura DG, Ross MJ, Miozzari G, Crea R, Seeburg PH (1979) Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281:544–548

Article  CAS  PubMed  Google Scholar 

Ranke MB, Wit JM (2018) Growth hormone: past, present and future. Nat Rev Endocrinol 14:285–300

Article  CAS  PubMed  Google Scholar 

Cianfarani S (2021) Safety of pediatric rhGH therapy: an overview and the need for long-term surveillance. Front Endocrinol (Lausanne) 12:811846

Article  PubMed  Google Scholar 

Hertel NT, Eklöf O, Ivarsson S, Aronson S, Westphal O, Sipilä I, Kaitila I, Bland J, Veimo D, Müller J, Mohnike K, Neumeyer L, Ritzen M, Hagenäs L (2005) Growth hormone treatment in 35 prepubertal children with achondroplasia: a five-year dose-response trial. Acta Paediatr 94:1402–1410

Article  PubMed  Google Scholar 

Harada D, Namba N, Hanioka Y, Ueyama K, Sakamoto N, Nakano Y, Izui M, Nagamatsu Y, Kashiwagi H, Yamamuro M, Ishiura Y, Ogitani A, Seino Y (2017) Final adult height in long-term growth hormone-treated achondroplasia patients. Eur J Pediatr 176:873–879

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naski MC, Colvin JS, Coffin JD, Ornitz DM (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977–4988

Article  CAS  PubMed  Google Scholar 

King D, Jarjoura D, McEwen HA, Askew MJ (2005) Growth hormone injections improve bone quality in a mouse model of osteogenesis imperfecta. J Bone Miner Res 20:987–993

Article  CAS  PubMed  Google Scholar 

Mori K, Suenaga Y, Toriwaki J (2003) Fast software-based volume rendering using multimedia instructions on PC platforms and its application to virtual endoscopy. Proc SPIE 5031:111–122

Article  Google Scholar 

Kake T, Kitamura H, Adachi Y, Yoshioka T, Watanabe T, Matsushita H, Fujii T, Kondo E, Tachibe T, Kawase Y, Jishage K, Yasoda A, Mukoyama M, Nakao K (2009) Chronically elevated plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice. Am J Physiol Endocrinol Metab 297:E1339-1348

Article  CAS  PubMed  Google Scholar 

Kaneko S, Matsushita M, Mishima K, Takegami Y, Imagama S, Kitoh H (2020) Effect of periosteal resection on longitudinal bone growth in a mouse model of achondroplasia. Bone Rep 13:100708

Article  PubMed  PubMed Central  Google Scholar 

Mugniery OE, Dacquin R, Marty C, Benoist-Lasselin C, de Vernejoul MC, Jurdic P, Munnich A, Geoffroy V, Legeai-Mallet L (2012) An activating Fgfr3 mutation affects trabecular bone formation via a paracrine mechanism during growth. Hum Mol Genet 21:2503–2513

Article  CAS  PubMed  Google Scholar 

Krejci P, Murakami S, Prochazkova J, Trantirek L, Chlebova K, Ouyang Z, Aklian A, Smutny J, Bryja V, Kozubik A, Wilcox WR (2010) NF449 is a novel inhibitor of fibroblast growth factor receptor 3 (FGFR3) signaling active in chondrocytes and multiple myeloma cells. J Biol Chem 285:20644–20653

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krejci P, Bryja V, Pachernik J, Hampl A, Pogue R, Mekikian P, Wilcox WR (2004) FGF2 inhibits proliferation and alters the cartilage-like phenotype of RCS cells. Exp Cell Res 297:152–164

Article  CAS  PubMed  Google Scholar 

De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95

Article  PubMed  Google Scholar 

Saint-Laurent C, Garde-Etayo L, Gouze E (2019) Obesity in achondroplasia patients: from evidence to medical monitoring. Orphanet J Rare Dis 14:253

Article  PubMed  PubMed Central  Google Scholar 

Ornitz DM, Marie PJ (2015) Fibroblast growth factor signaling in skeletal development and disease. Genes Dev 29:1463–1486

留言 (0)

沒有登入
gif