Disulfiram ameliorates bone loss in ovariectomized mice by suppressing osteoclastogenesis

Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. https://doi.org/10.1007/s11657-013-0136-1

Article  Google Scholar 

Walker MD, Shane E (2023) Postmenopausal osteoporosis. N Engl J Med 389:1979–1991. https://doi.org/10.1056/NEJMcp2307353

Article  Google Scholar 

Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184. https://doi.org/10.1359/jbmr.041114

Article  CAS  Google Scholar 

Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, Hadji P, Hofbauer LC, Alvaro-Gracia JM, Wang H, Austin M, Wagman RB, Newmark R, Libanati C, San Martin J, Bone HG (2009) Comparison of the effect of denosumab and alendronate on bmd and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 24:153–161. https://doi.org/10.1359/jbmr.0809010

Article  CAS  Google Scholar 

Ann DG (1994) Bisphosphonates : structure-activity relationships and therapeutic implications. Medicina 57:61–64

Google Scholar 

Weivoda MM, Chew CK, Monroe DG, Farr JN, Atkinson EJ et al (2020) Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun 11:87. https://doi.org/10.1038/s41467-019-14003-6

Article  CAS  Google Scholar 

Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. https://doi.org/10.1016/s0278-2391(03)00720-1

Article  Google Scholar 

Greenberg MS (2004) Intravenous bisphosphonates and osteonecrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. https://doi.org/10.1016/j.tripleo.2004.08.001

Article  Google Scholar 

Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL (2004) Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62:527–534. https://doi.org/10.1016/j.joms.2004.02.004

Article  Google Scholar 

Papapetrou PD (2009) Bisphosphonate-associated adverse events (Athens). Hormones 8:96–110. https://doi.org/10.14310/horm.2002.1226

Article  Google Scholar 

Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 87:7260–7264. https://doi.org/10.1073/pnas.87.18.7260

Article  CAS  Google Scholar 

Nakashima T, Takayanagi H (2009) Osteoclasts and the immune system. J Bone Miner Metab 27:519–529. https://doi.org/10.1007/s00774-009-0089-z

Article  CAS  Google Scholar 

Yasuda H (2021) Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 39:2–11. https://doi.org/10.1007/s00774-020-01175-1

Article  Google Scholar 

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901. https://doi.org/10.1016/s1534-5807(02)00369-6

Article  CAS  Google Scholar 

Barrera SE, Osinski WA, Davidoff E (1950) The use of antabuse (tetraethylthiuramdisulphide) in chronic alcoholics. Am J Psychiatry 107:8–13. https://doi.org/10.1176/ajp.107.1.8

Article  CAS  Google Scholar 

Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S et al (2020) Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun 11:609. https://doi.org/10.1038/s41467-020-14338-5

Article  CAS  Google Scholar 

Terashima Y, Onai N, Murai M, Enomoto M, Poonpiriya V, Hamada T, Motomura K, Suwa M, Ezaki T, Haga T, Kanegasaki S, Matsushima K (2005) Pivotal function for cytoplasmic protein FROUNT in CCR2-mediated monocyte chemotaxis. Nat Immunol 6:827–835. https://doi.org/10.1038/ni1222

Article  CAS  Google Scholar 

Toda E, Terashima Y, Sato T, Hirose K, Kanegasaki S, Matsushima K (2009) FROUNT is a common regulator of CCR2 and CCR5 signaling to control directional migration. J Immunol 183:6387–6394. https://doi.org/10.4049/jimmunol.0803469

Article  CAS  Google Scholar 

Saitoh A, Nagayama Y, Yamada D, Makino K, Yoshioka T, Yamanaka N, Nakatani M, Takahashi Y, Yamazaki M, Shigemoto C, Ohashi M, Okano K, Omata T, Toda E, Sano Y, Takahashi H, Matsushima K, Terashima Y (2022) Disulfiram produces potent anxiolytic-like effects without benzodiazepine anxiolytics-related adverse effects in mice. Front Pharmacol 13:826783. https://doi.org/10.3389/fphar.2022.826783

Article  CAS  Google Scholar 

Toda E, Sawada A, Takeuchi K, Wakamatsu K, Ishikawa A, Kuwahara N, Sawa Y, Hatanaka S, Kokubo K, Makino K, Takahashi H, Endo Y, Kunugi S, Terasaki M, Terasaki Y, Matsushima K, Terashima Y, Shimizu A (2022) Inhibition of the chemokine signal regulator FROUNT by disulfiram ameliorates crescentic glomerulonephritis. Kidney Int 102:1276–1290. https://doi.org/10.1016/j.kint.2022.07.031

Article  CAS  Google Scholar 

Ikebukuro T, Arima T, Kasamatsu M, Nakano Y, Tobita Y, Uchiyama M, Terashima Y, Toda E, Shimizu A, Takahashi H (2023) Disulfiram ophthalmic solution inhibited macrophage infiltration by suppressing macrophage pseudopodia formation in a rat corneal alkali burn model. Int J Mol Sci. https://doi.org/10.3390/ijms24010735

Article  Google Scholar 

Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL, Wang W (2011) Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 104:1564–1574. https://doi.org/10.1038/bjc.2011.126

Article  CAS  Google Scholar 

Ying H, Qin A, Cheng TS, Pavlos NJ, Rea S, Dai K, Zheng MH (2015) Disulfiram attenuates osteoclast differentiation in vitro: a potential antiresorptive agent. PLoS ONE 10:e0125696. https://doi.org/10.1371/journal.pone.0125696

Article  CAS  Google Scholar 

Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:296. https://doi.org/10.1186/s13059-019-1874-1

Article  CAS  Google Scholar 

Zappia L, Oshlack A (2018) Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience. https://doi.org/10.1093/gigascience/giy083

Article  Google Scholar 

Stubelius A, Andersson A, Holmdahl R, Ohlsson C, Islander U, Carlsten H (2016) Ncf1 affects osteoclast formation but is not critical for postmenopausal bone loss. BMC Musculoskelet Disord 17:464. https://doi.org/10.1186/s12891-016-1315-1

Article  CAS  Google Scholar 

Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23:582–590. https://doi.org/10.1016/j.tem.2012.05.005

Article  CAS  Google Scholar 

Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304. https://doi.org/10.1038/nri2062

Article  CAS  Google Scholar 

Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, Tamura T, Ozato K, Choi Y, Ivashkiv LB, Takayanagi H, Kamijo R (2009) Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med 15:1066–1071. https://doi.org/10.1038/nm.2007

Article  CAS  Google Scholar 

Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663. https://doi.org/10.1359/jbmr.1999.14.10.1654

Article  CAS  Google Scholar 

Tsukasaki M, Huynh NC, Okamoto K, Muro R, Terashima A, Kurikawa Y, Komatsu N, Pluemsakunthai W, Nitta T, Abe T, Kiyonari H, Okamura T, Sakai M, Matsukawa T, Matsumoto M, Kobayashi Y, Penninger JM, Takayanagi H (2020) Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab Germany. https://doi.org/10.1038/s42255-020-00318-y

Article  Google Scholar 

Jacquin C, Gran DE, Lee SK, Lorenzo JA, Aguila HL (2006) Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res 21:67–77. https://doi.org/10.1359/jbmr.051007

Article  Google Scholar 

Muguruma Y, Lee MY (1998) Isolation and characterization of murine clonogenic osteoclast progenitors by cell surface phenotype analysis. Blood 91:1272–1279

Article  CAS  Google Scholar 

Filipović M, Flegar D, Aničić S, Šisl D, Kelava T, Kovačić N, Šućur A, Grčević D (2022) Transcriptome profiling of osteoclast subsets associated with arthritis: a pathogenic role of CCR2hi osteoclast progenitors. Front Immunol 13:994035.

留言 (0)

沒有登入
gif