Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization

Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. cytotoxic cells with specificity for mouse Moloney leukemia cells. specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

Article  CAS  PubMed  Google Scholar 

Herberman, R. B., Nunn, M. E. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. distribution of reactivity and specificity. Int. J. Cancer 16, 216–229 (1975).

Article  CAS  PubMed  Google Scholar 

Aktas, E., Erten, G., Kucuksezer, U. C. & Deniz, G. Natural killer cells: versatile roles in autoimmune and infectious diseases. Expert Rev. Clin. Immunol. 5, 405–420 (2009).

Article  CAS  PubMed  Google Scholar 

Liu, M., Liang, S. & Zhang, C. NK cells in autoimmune diseases: protective or pathogenic? Front. Immunol. 12, 624687 (2021).

Article  CAS  PubMed  Google Scholar 

Kucuksezer, U. C. et al. The role of natural killer cells in autoimmune diseases. Front. Immunol. 12, 622306 (2021).

Article  CAS  PubMed  Google Scholar 

Radomska-Lesniewska, D. M., Bialoszewska, A. & Kaminski, P. Angiogenic properties of NK cells in cancer and other angiogenesis-dependent diseases. Cells. 10,1621 (2021).

Liu, Q. et al. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am. J. Pathol. 181, 452–462 (2012).

Article  CAS  PubMed  Google Scholar 

Sobecki, M. et al. NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence. Nat. Commun. 12, 4700 (2021).

Article  CAS  PubMed  Google Scholar 

Cavalcante-Silva, J. & Koh, T. J. Role of NK cells in skin wound healing of mice. J. Immunol. 210, 981–990 (2023).

Article  PubMed  Google Scholar 

Von Woon, E. et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum. Reprod. Update 28, 548–582 (2022).

Article  CAS  Google Scholar 

Camous, X., Pera, A., Solana, R. & Larbi, A. NK cells in healthy aging and age-associated diseases. J. Biomed. Biotechnol. 2012, 195956 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Antonangeli, F., Zingoni, A., Soriani, A. & Santoni, A. Senescent cells: living or dying is a matter of NK cells. J. Leukoc. Biol. 105, 1275–1283 (2019).

Article  CAS  PubMed  Google Scholar 

Chelyapov, N., Nguyen, T. T. & Gonzalez, R. Autologous NK cells propagated and activated ex vivo decrease senescence markers in human PBMCs. Biochem. Biophys. Rep. 32, 101380 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Podack, E. R. et al. Structure, function, and expression of murine and human perforin 1 (P1). Immunol. Rev. 103, 203–211 (1988).

Article  CAS  PubMed  Google Scholar 

Podack, E. R. & Dennert, G. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302, 442–445 (1983).

Article  CAS  PubMed  Google Scholar 

Jenne, D. et al. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA 85, 4814–4818 (1988).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, D. H. et al. Granulysin crystal structure and a structure-derived lytic mechanism. J. Mol. Biol. 325, 355–365 (2003).

Article  CAS  PubMed  Google Scholar 

Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

Article  CAS  PubMed  Google Scholar 

Crespo, A. C. et al. Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts. Cell 182, 1125–1139 e1118 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bykovskaja, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. I. Hypertrophy and change of orientation of the Golgi apparatus. Cell Immunol. 40, 164–174 (1978).

Article  CAS  PubMed  Google Scholar 

Bykovskaja, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. II. morphogenesis of secretory granules and intracellular vacuoles. Cell Immunol. 40, 175–185 (1978).

Article  CAS  PubMed  Google Scholar 

Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15, 749–795 (1997).

Article  CAS  PubMed  Google Scholar 

Perussia, B. Lymphokine-activated killer cells, natural killer cells, and cytokines. Curr. Opin. Immunol. 3, 49–55 (1991).

Article  CAS  PubMed  Google Scholar 

Cassatella, M. A. et al. Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. studies on the gene expression of several NADPH oxidase components. J. Biol. Chem. 265, 20241–20246 (1990).

Article  CAS  PubMed  Google Scholar 

Bradley, L. M., Dalton, D. K. & Croft, M. A direct role for IFN-gamma in regulation of Th1 cell development. J. Immunol. 157, 1350–1358 (1996).

Article  CAS  PubMed  Google Scholar 

Snapper, C. M. & Paul, W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).

Article  CAS  PubMed  Google Scholar 

Gronberg, A. et al. IFN-gamma treatment of K562 cells inhibits natural killer cell triggering and decreases the susceptibility to lysis by cytoplasmic granules from large granular lymphocytes. J. Immunol. 140, 4397–4402 (1988).

Article  CAS  PubMed  Google Scholar 

Gray, J. D., Hirokawa, M., Ohtsuka, K. & Horwitz, D. A. Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-beta: contrasting effects of anti-CD2 and anti-CD3. J. Immunol. 160, 2248–2254 (1998).

Article  CAS  PubMed  Google Scholar 

Wahl, S. M. Transforming growth factor beta: the good, the bad, and the ugly. J. Exp. Med. 180, 1587–1590 (1994).

Article  CAS  PubMed  Google Scholar 

Sporn, M. B., Roberts, A. B., Wakefield, L. M. & de Crombrugghe, B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell Biol. 105, 1039–1045 (1987).

Article  CAS  PubMed  Google Scholar 

Ostapchuk, Y. O. et al. Peripheral blood NK cells expressing HLA-G, IL-10, and TGF-beta in healthy donors and breast cancer patients. Cell Immunol. 298, 37–46 (2015).

Article  CAS  PubMed  Google Scholar 

Perona-Wright, G. et al. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6, 503–512 (2009).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif