Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. cytotoxic cells with specificity for mouse Moloney leukemia cells. specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).
Article CAS PubMed Google Scholar
Herberman, R. B., Nunn, M. E. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. distribution of reactivity and specificity. Int. J. Cancer 16, 216–229 (1975).
Article CAS PubMed Google Scholar
Aktas, E., Erten, G., Kucuksezer, U. C. & Deniz, G. Natural killer cells: versatile roles in autoimmune and infectious diseases. Expert Rev. Clin. Immunol. 5, 405–420 (2009).
Article CAS PubMed Google Scholar
Liu, M., Liang, S. & Zhang, C. NK cells in autoimmune diseases: protective or pathogenic? Front. Immunol. 12, 624687 (2021).
Article CAS PubMed Google Scholar
Kucuksezer, U. C. et al. The role of natural killer cells in autoimmune diseases. Front. Immunol. 12, 622306 (2021).
Article CAS PubMed Google Scholar
Radomska-Lesniewska, D. M., Bialoszewska, A. & Kaminski, P. Angiogenic properties of NK cells in cancer and other angiogenesis-dependent diseases. Cells. 10,1621 (2021).
Liu, Q. et al. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am. J. Pathol. 181, 452–462 (2012).
Article CAS PubMed Google Scholar
Sobecki, M. et al. NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence. Nat. Commun. 12, 4700 (2021).
Article CAS PubMed Google Scholar
Cavalcante-Silva, J. & Koh, T. J. Role of NK cells in skin wound healing of mice. J. Immunol. 210, 981–990 (2023).
Von Woon, E. et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum. Reprod. Update 28, 548–582 (2022).
Camous, X., Pera, A., Solana, R. & Larbi, A. NK cells in healthy aging and age-associated diseases. J. Biomed. Biotechnol. 2012, 195956 (2012).
Article PubMed PubMed Central Google Scholar
Antonangeli, F., Zingoni, A., Soriani, A. & Santoni, A. Senescent cells: living or dying is a matter of NK cells. J. Leukoc. Biol. 105, 1275–1283 (2019).
Article CAS PubMed Google Scholar
Chelyapov, N., Nguyen, T. T. & Gonzalez, R. Autologous NK cells propagated and activated ex vivo decrease senescence markers in human PBMCs. Biochem. Biophys. Rep. 32, 101380 (2022).
CAS PubMed PubMed Central Google Scholar
Podack, E. R. et al. Structure, function, and expression of murine and human perforin 1 (P1). Immunol. Rev. 103, 203–211 (1988).
Article CAS PubMed Google Scholar
Podack, E. R. & Dennert, G. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302, 442–445 (1983).
Article CAS PubMed Google Scholar
Jenne, D. et al. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA 85, 4814–4818 (1988).
Article CAS PubMed PubMed Central Google Scholar
Anderson, D. H. et al. Granulysin crystal structure and a structure-derived lytic mechanism. J. Mol. Biol. 325, 355–365 (2003).
Article CAS PubMed Google Scholar
Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).
Article CAS PubMed Google Scholar
Crespo, A. C. et al. Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts. Cell 182, 1125–1139 e1118 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bykovskaja, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. I. Hypertrophy and change of orientation of the Golgi apparatus. Cell Immunol. 40, 164–174 (1978).
Article CAS PubMed Google Scholar
Bykovskaja, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. II. morphogenesis of secretory granules and intracellular vacuoles. Cell Immunol. 40, 175–185 (1978).
Article CAS PubMed Google Scholar
Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15, 749–795 (1997).
Article CAS PubMed Google Scholar
Perussia, B. Lymphokine-activated killer cells, natural killer cells, and cytokines. Curr. Opin. Immunol. 3, 49–55 (1991).
Article CAS PubMed Google Scholar
Cassatella, M. A. et al. Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. studies on the gene expression of several NADPH oxidase components. J. Biol. Chem. 265, 20241–20246 (1990).
Article CAS PubMed Google Scholar
Bradley, L. M., Dalton, D. K. & Croft, M. A direct role for IFN-gamma in regulation of Th1 cell development. J. Immunol. 157, 1350–1358 (1996).
Article CAS PubMed Google Scholar
Snapper, C. M. & Paul, W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).
Article CAS PubMed Google Scholar
Gronberg, A. et al. IFN-gamma treatment of K562 cells inhibits natural killer cell triggering and decreases the susceptibility to lysis by cytoplasmic granules from large granular lymphocytes. J. Immunol. 140, 4397–4402 (1988).
Article CAS PubMed Google Scholar
Gray, J. D., Hirokawa, M., Ohtsuka, K. & Horwitz, D. A. Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-beta: contrasting effects of anti-CD2 and anti-CD3. J. Immunol. 160, 2248–2254 (1998).
Article CAS PubMed Google Scholar
Wahl, S. M. Transforming growth factor beta: the good, the bad, and the ugly. J. Exp. Med. 180, 1587–1590 (1994).
Article CAS PubMed Google Scholar
Sporn, M. B., Roberts, A. B., Wakefield, L. M. & de Crombrugghe, B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell Biol. 105, 1039–1045 (1987).
Article CAS PubMed Google Scholar
Ostapchuk, Y. O. et al. Peripheral blood NK cells expressing HLA-G, IL-10, and TGF-beta in healthy donors and breast cancer patients. Cell Immunol. 298, 37–46 (2015).
Article CAS PubMed Google Scholar
Perona-Wright, G. et al. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6, 503–512 (2009).
留言 (0)