UNAIDS, Global HIV. & AIDS statistics — Fact sheet. Accessed 2024.04.01, 2024. https://www.unaids.org/en/resources/fact-sheet
World Health Organization. GLOBAL TUBERCULOSIS REPORT 2023. Licence: CC BY-NC-SA 3.0 IGO.
Dye C, Williams BG. Tuberculosis decline in populations affected by HIV: a retrospective study of 12 countries in the WHO African Region. Bull World Health Organ Jun. 2019;1(6):405–14. https://doi.org/10.2471/blt.18.228577.
Dannenberg AM. Jr. Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis Mar-Apr. 1989;11(Suppl 2):S369–78. https://doi.org/10.1093/clinids/11.supplement_2.s369.
Douek DC, Picker LJ, Koup RA. T cell dynamics in HIV-1 infection. Annu Rev Immunol. 2003;21:265–304. https://doi.org/10.1146/annurev.immunol.21.120601.141053.
Article CAS PubMed Google Scholar
Fenwick C, Joo V, Jacquier P, et al. T-cell exhaustion in HIV infection. Immunol Rev Nov. 2019;292(1):149–63. https://doi.org/10.1111/imr.12823.
Bell LCK, Noursadeghi M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol Feb. 2018;16(2):80–90. https://doi.org/10.1038/nrmicro.2017.128.
Taguchi T, Mukai K. Innate immunity signalling and membrane trafficking. Curr Opin Cell Biol Aug. 2019;59:1–7. https://doi.org/10.1016/j.ceb.2019.02.002.
Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol Sep. 2021;21(9):548–69. https://doi.org/10.1038/s41577-021-00524-z.
Lahaye X, Satoh T, Gentili M, et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immun Dec. 2013;12(6):1132–42. https://doi.org/10.1016/j.immuni.2013.11.002.
Collins AC, Cai H, Li T, et al. Cyclic GMP-AMP synthase is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe Jun. 2015;10(6):820–8. https://doi.org/10.1016/j.chom.2015.05.005.
Sumner RP, Harrison L, Touizer E, et al. Disrupting HIV-1 capsid formation causes cGAS sensing of viral DNA. Embo j Oct. 2020;15(20):e103958. https://doi.org/10.15252/embj.2019103958.
Sun Y, Zhang W, Dong C, Xiong S. Mycobacterium tuberculosis MmsA (Rv0753c) interacts with STING and blunts the type I Interferon Response. mBio Dec. 2020;1(6). https://doi.org/10.1128/mBio.03254-19.
Hu Y, Ye R, Su J, Rui Y, Yu XF. cGAS-STING-mediated novel nonclassic antiviral activities. J Med Virol Feb. 2024;96(2):e29403. https://doi.org/10.1002/jmv.29403.
Krapp C, Jønsson K, Jakobsen MR. STING dependent sensing - does HIV actually care? Cytokine Growth Factor Rev Apr. 2018;40:68–76. https://doi.org/10.1016/j.cytogfr.2018.03.002.
Majlessi L, Brosch R. Mycobacterium tuberculosis meets the Cytosol: the role of cGAS in anti-mycobacterial immunity. Cell Host Microbe Jun. 2015;10(6):733–5. https://doi.org/10.1016/j.chom.2015.05.017.
Esmail H, Riou C, Bruyn ED, et al. The Immune response to Mycobacterium tuberculosis in HIV-1-Coinfected persons. Annu Rev Immunol Apr. 2018;26:36:603–38. https://doi.org/10.1146/annurev-immunol-042617-053420.
Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol Nov. 2017;17(11):691–702. https://doi.org/10.1038/nri.2017.69.
Reuschl AK, Edwards MR, Parker R, et al. Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog Sep. 2017;13(9):e1006577. https://doi.org/10.1371/journal.ppat.1006577.
Nouailles G, Dorhoi A, Koch M, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest Mar. 2014;124(3):1268–82. https://doi.org/10.1172/jci72030.
Khan HS, Nair VR, Ruhl CR, et al. Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis. Elife Mar. 2020;5(9). https://doi.org/10.7554/eLife.52551.
Zumla A, Raviglione M, Hafner R, von Reyn CF, Tuberculosis. N Engl J Med. Feb 2013;21(8):745–55. https://doi.org/10.1056/NEJMra1200894.
Auld SC, Staitieh BS. HIV and the tuberculosis set point: how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology Sep. 2020;23(1):32. https://doi.org/10.1186/s12977-020-00540-2.
Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune response to Mycobacterium tuberculosis infection. Annu Rev Immunol Apr. 2021;26:39:611–37. https://doi.org/10.1146/annurev-immunol-093019-010426.
Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol Jan. 2007;5(1):39–47. https://doi.org/10.1038/nrmicro1538.
Lin PL, Flynn JL. The end of the binary era: revisiting the Spectrum of Tuberculosis. J Immunol. 2018;201(9):2541–8. https://doi.org/10.4049/jimmunol.1800993.
Article CAS PubMed Google Scholar
Diedrich CR, O’Hern J, Wilkinson RJ. HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis. Tuberculosis (Edinb) May. 2016;98:62–76. https://doi.org/10.1016/j.tube.2016.02.010.
Zhang Y, Nakata K, Weiden M, Rom WN. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J Clin Invest May. 1995;95(5):2324–31. https://doi.org/10.1172/jci117924.
He X, Eddy JJ, Jacobson KR, Henderson AJ, Agosto LM. Enhanced human immunodeficiency Virus-1 replication in CD4 + T cells derived from individuals with latent Mycobacterium tuberculosis infection. J Infect Dis Oct. 2020;1(9):1550–60. https://doi.org/10.1093/infdis/jiaa257.
Falvo JV, Ranjbar S, Jasenosky LD, Goldfeld AE. Arc of a vicious circle: pathways activated by Mycobacterium tuberculosis that target the HIV-1 long terminal repeat. Am J Respir Cell Mol Biol Dec. 2011;45(6):1116–24. https://doi.org/10.1165/rcmb.2011-0186TR.
Souriant S, Balboa L, Dupont M, et al. Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-Dependent tunneling nanotube formation in macrophages. Cell Rep Mar. 2019;26(13):3586–e35997. https://doi.org/10.1016/j.celrep.2019.02.091.
Foreman TW, Nelson CE, Kauffman KD, et al. CD4 T cells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Rep May. 2022;31(9):110896. https://doi.org/10.1016/j.celrep.2022.110896.
Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immun Jul. 2020;14(1):43–53. https://doi.org/10.1016/j.immuni.2020.05.013.
Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Sci Mar. 2019;8(6431). https://doi.org/10.1126/science.aat8657.
Ablasser A, Goldeck M, Cavlar T, et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nat Jun. 2013;20(7454):380–4. https://doi.org/10.1038/nature12306.
Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K. Comprehensive classification of nucleotidyltransferase Fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res Dec. 2009;37(22):7701–14. https://doi.org/10.1093/nar/gkp854.
Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nat Jun. 2013;20(7454):332–7. https://doi.org/10.1038/nature12305.
Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nat Sep. 2017;21(7672):394–8. https://doi.org/10.1038/nature23890.
留言 (0)