The cGAS-STING pathway in HIV-1 and Mycobacterium tuberculosis coinfection

UNAIDS, Global HIV. & AIDS statistics — Fact sheet. Accessed 2024.04.01, 2024. https://www.unaids.org/en/resources/fact-sheet

World Health Organization. GLOBAL TUBERCULOSIS REPORT 2023. Licence: CC BY-NC-SA 3.0 IGO.

Dye C, Williams BG. Tuberculosis decline in populations affected by HIV: a retrospective study of 12 countries in the WHO African Region. Bull World Health Organ Jun. 2019;1(6):405–14. https://doi.org/10.2471/blt.18.228577.

Article  Google Scholar 

Dannenberg AM. Jr. Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis Mar-Apr. 1989;11(Suppl 2):S369–78. https://doi.org/10.1093/clinids/11.supplement_2.s369.

Article  Google Scholar 

Douek DC, Picker LJ, Koup RA. T cell dynamics in HIV-1 infection. Annu Rev Immunol. 2003;21:265–304. https://doi.org/10.1146/annurev.immunol.21.120601.141053.

Article  CAS  PubMed  Google Scholar 

Fenwick C, Joo V, Jacquier P, et al. T-cell exhaustion in HIV infection. Immunol Rev Nov. 2019;292(1):149–63. https://doi.org/10.1111/imr.12823.

Article  CAS  Google Scholar 

Bell LCK, Noursadeghi M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol Feb. 2018;16(2):80–90. https://doi.org/10.1038/nrmicro.2017.128.

Article  CAS  Google Scholar 

Taguchi T, Mukai K. Innate immunity signalling and membrane trafficking. Curr Opin Cell Biol Aug. 2019;59:1–7. https://doi.org/10.1016/j.ceb.2019.02.002.

Article  CAS  Google Scholar 

Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol Sep. 2021;21(9):548–69. https://doi.org/10.1038/s41577-021-00524-z.

Article  CAS  Google Scholar 

Lahaye X, Satoh T, Gentili M, et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immun Dec. 2013;12(6):1132–42. https://doi.org/10.1016/j.immuni.2013.11.002.

Article  CAS  Google Scholar 

Collins AC, Cai H, Li T, et al. Cyclic GMP-AMP synthase is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe Jun. 2015;10(6):820–8. https://doi.org/10.1016/j.chom.2015.05.005.

Article  CAS  Google Scholar 

Sumner RP, Harrison L, Touizer E, et al. Disrupting HIV-1 capsid formation causes cGAS sensing of viral DNA. Embo j Oct. 2020;15(20):e103958. https://doi.org/10.15252/embj.2019103958.

Article  CAS  Google Scholar 

Sun Y, Zhang W, Dong C, Xiong S. Mycobacterium tuberculosis MmsA (Rv0753c) interacts with STING and blunts the type I Interferon Response. mBio Dec. 2020;1(6). https://doi.org/10.1128/mBio.03254-19.

Hu Y, Ye R, Su J, Rui Y, Yu XF. cGAS-STING-mediated novel nonclassic antiviral activities. J Med Virol Feb. 2024;96(2):e29403. https://doi.org/10.1002/jmv.29403.

Article  CAS  Google Scholar 

Krapp C, Jønsson K, Jakobsen MR. STING dependent sensing - does HIV actually care? Cytokine Growth Factor Rev Apr. 2018;40:68–76. https://doi.org/10.1016/j.cytogfr.2018.03.002.

Article  CAS  Google Scholar 

Majlessi L, Brosch R. Mycobacterium tuberculosis meets the Cytosol: the role of cGAS in anti-mycobacterial immunity. Cell Host Microbe Jun. 2015;10(6):733–5. https://doi.org/10.1016/j.chom.2015.05.017.

Article  CAS  Google Scholar 

Esmail H, Riou C, Bruyn ED, et al. The Immune response to Mycobacterium tuberculosis in HIV-1-Coinfected persons. Annu Rev Immunol Apr. 2018;26:36:603–38. https://doi.org/10.1146/annurev-immunol-042617-053420.

Article  CAS  Google Scholar 

Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol Nov. 2017;17(11):691–702. https://doi.org/10.1038/nri.2017.69.

Article  CAS  Google Scholar 

Reuschl AK, Edwards MR, Parker R, et al. Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog Sep. 2017;13(9):e1006577. https://doi.org/10.1371/journal.ppat.1006577.

Article  CAS  Google Scholar 

Nouailles G, Dorhoi A, Koch M, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest Mar. 2014;124(3):1268–82. https://doi.org/10.1172/jci72030.

Article  CAS  Google Scholar 

Khan HS, Nair VR, Ruhl CR, et al. Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis. Elife Mar. 2020;5(9). https://doi.org/10.7554/eLife.52551.

Zumla A, Raviglione M, Hafner R, von Reyn CF, Tuberculosis. N Engl J Med. Feb 2013;21(8):745–55. https://doi.org/10.1056/NEJMra1200894.

Auld SC, Staitieh BS. HIV and the tuberculosis set point: how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology Sep. 2020;23(1):32. https://doi.org/10.1186/s12977-020-00540-2.

Article  Google Scholar 

Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune response to Mycobacterium tuberculosis infection. Annu Rev Immunol Apr. 2021;26:39:611–37. https://doi.org/10.1146/annurev-immunol-093019-010426.

Article  CAS  Google Scholar 

Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol Jan. 2007;5(1):39–47. https://doi.org/10.1038/nrmicro1538.

Article  CAS  Google Scholar 

Lin PL, Flynn JL. The end of the binary era: revisiting the Spectrum of Tuberculosis. J Immunol. 2018;201(9):2541–8. https://doi.org/10.4049/jimmunol.1800993.

Article  CAS  PubMed  Google Scholar 

Diedrich CR, O’Hern J, Wilkinson RJ. HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis. Tuberculosis (Edinb) May. 2016;98:62–76. https://doi.org/10.1016/j.tube.2016.02.010.

Article  CAS  Google Scholar 

Zhang Y, Nakata K, Weiden M, Rom WN. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J Clin Invest May. 1995;95(5):2324–31. https://doi.org/10.1172/jci117924.

Article  CAS  Google Scholar 

He X, Eddy JJ, Jacobson KR, Henderson AJ, Agosto LM. Enhanced human immunodeficiency Virus-1 replication in CD4 + T cells derived from individuals with latent Mycobacterium tuberculosis infection. J Infect Dis Oct. 2020;1(9):1550–60. https://doi.org/10.1093/infdis/jiaa257.

Article  CAS  Google Scholar 

Falvo JV, Ranjbar S, Jasenosky LD, Goldfeld AE. Arc of a vicious circle: pathways activated by Mycobacterium tuberculosis that target the HIV-1 long terminal repeat. Am J Respir Cell Mol Biol Dec. 2011;45(6):1116–24. https://doi.org/10.1165/rcmb.2011-0186TR.

Article  CAS  Google Scholar 

Souriant S, Balboa L, Dupont M, et al. Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-Dependent tunneling nanotube formation in macrophages. Cell Rep Mar. 2019;26(13):3586–e35997. https://doi.org/10.1016/j.celrep.2019.02.091.

Article  CAS  Google Scholar 

Foreman TW, Nelson CE, Kauffman KD, et al. CD4 T cells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Rep May. 2022;31(9):110896. https://doi.org/10.1016/j.celrep.2022.110896.

Article  CAS  Google Scholar 

Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immun Jul. 2020;14(1):43–53. https://doi.org/10.1016/j.immuni.2020.05.013.

Article  CAS  Google Scholar 

Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Sci Mar. 2019;8(6431). https://doi.org/10.1126/science.aat8657.

Ablasser A, Goldeck M, Cavlar T, et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nat Jun. 2013;20(7454):380–4. https://doi.org/10.1038/nature12306.

Article  CAS  Google Scholar 

Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K. Comprehensive classification of nucleotidyltransferase Fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res Dec. 2009;37(22):7701–14. https://doi.org/10.1093/nar/gkp854.

Article  CAS  Google Scholar 

Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nat Jun. 2013;20(7454):332–7. https://doi.org/10.1038/nature12305.

Article  CAS  Google Scholar 

Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nat Sep. 2017;21(7672):394–8. https://doi.org/10.1038/nature23890.

Article 

留言 (0)

沒有登入
gif