Farce A, Loge C, Gallet S, Lebegue N, Carato P, Chavatte P. et al. Docking Study of Ligands into the Colchicine Binding Site of Tubulin. J Enzyme Inhib Med Chem. 2004;19:541–47. https://doi.org/10.1080/14756360412331280545.
Article CAS PubMed Google Scholar
Wang Y-T, Shi T-Q, Zhu H-L, Liu C-H. Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors. Bioorg Med Chem. 2019;27:502–15. https://doi.org/10.1016/j.bmc.2018.12.031.
Article CAS PubMed Google Scholar
Nogales E, Whittaker M, Milligan RA, Downing KH. High-Resolution Model of the Microtubule. Cell. 1999;96:79–88. https://doi.org/10.1016/S0092-8674(00)80961-7.
Article CAS PubMed Google Scholar
El-Nakkady SS, Hanna MM, Roaiah HM, Ghannam IA. Synthesis, molecular docking study and antitumor activity of novel 2-phenylindole derivatives. Eur J Med Chem. 2012;47:387–98. https://doi.org/10.1016/j.ejmech.2011.11.007.
Article CAS PubMed Google Scholar
Sharma S, Kaur C, Budhiraja A, Nepali K, Gupta MK, Saxena AK. et al. Chalcone based azacarboline analogues as novel antitubulin agents: design, synthesis, biological evaluation and molecular modelling studies. Eur J Med Chem. 2014;85:648–60. https://doi.org/10.1016/j.ejmech.2014.08.005.
Article CAS PubMed Google Scholar
Singh H, Kumar M, Nepali K, Gupta MK, Saxena AK, Sharma S. et al. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur J Med Chem. 2016;116:102–15. https://doi.org/10.1016/j.ejmech.2016.03.050.
Article CAS PubMed Google Scholar
Nepali K, Ojha R, Sharma S, Bedi PM, Dhar KL. Tubulin inhibitors: a patent survey. Recent Pat Anticancer Drug Discov. 2014;9:176–220. https://doi.org/10.2174/15748928113089990042.
Article CAS PubMed Google Scholar
Liu YM, Chen HL, Lee HY, Liou JP. Tubulin inhibitors: a patent review. Expert Opin Ther Pat. 2014;24:69–88. https://doi.org/10.1517/13543776.2014.859247.
Article CAS PubMed Google Scholar
Naaz F, Haider MR, Shafi S, Yar MS. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem. 2019;171:310–31. https://doi.org/10.1016/j.ejmech.2019.03.025.
Article CAS PubMed Google Scholar
Nam NH. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr Med Chem. 2003;10:1697–722. https://doi.org/10.2174/0929867033457151.
Article CAS PubMed Google Scholar
Pettit GR, Toki BE, Herald DL, Boyd MR, Hamel E, Pettit RK. et al. Antineoplastic agents. 410. Asymmetric hydroxylation of trans-combretastatin A-4. J Med Chem. 1999;42:1459–65. https://doi.org/10.1021/jm9807149.
Article CAS PubMed Google Scholar
Aleksandrzak K, McGown AT, Hadfield JA. Antimitotic activity of diaryl compounds with structural features resembling combretastatin A-4. Anticancer Drugs. 1998;9:545–50. https://doi.org/10.1097/00001813-199807000-00005.
Article CAS PubMed Google Scholar
Hatanaka T, Fujita K, Ohsumi K, Nakagawa R, Fukuda Y, Nihei Y. et al. Novel B-ring modified combretastatin analogues: syntheses and antineoplastic activity. Bioorg Med Chem Lett. 1998;8:3371–4. https://doi.org/10.1016/S0960-894X(98)00622-2.
Article CAS PubMed Google Scholar
Ohsumi K, Hatanaka T, Fujita K, Nakagawa R, Fukuda Y, Nihei Y. et al. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg Med Chem Lett. 1998;8:3153–8. https://doi.org/10.1016/S0960-894X(98)00579-4.
Article CAS PubMed Google Scholar
Ducki S. Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anticancer Agents Med Chem. 2009;9:336–47. https://doi.org/10.2174/1871520610909030336.
Article CAS PubMed Google Scholar
Kamal A, Kumar GB, Vishnuvardhan MV, Shaik AB, Reddy VS, Mahesh R. et al. Synthesis of phenstatin/isocombretastatin-chalcone conjugates as potent tubulin polymerization inhibitors and mitochondrial apoptotic inducers. Org Biomol Chem. 2015;13:3963–81. https://doi.org/10.1039/C4OB02606C.
Article CAS PubMed Google Scholar
Yan W, Xiangyu C, Ya L, Yu W, Feng X. An orally antitumor chalcone hybrid inhibited HepG2 cells growth and migration as the tubulin binding agent. Invest New Drugs. 2019;37:784–90. https://doi.org/10.1007/s10637-019-00737-z.
Article CAS PubMed Google Scholar
Canela MD, Noppen S, Bueno O, Prota AE, Bargsten K, Saez-Calvo G. et al. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Oncotarget. 2017;8:14325–42. https://doi.org/10.18632/oncotarget.9527.
Wang G, Liu W, Gong Z, Huang Y, Li Y, Peng Z. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. J Enzyme Inhib Med Chem. 2020;35:139–44. https://doi.org/10.1080/14756366.2019.1690479.
Article CAS PubMed Google Scholar
Kode J, Kovvuri J, Nagaraju B, Jadhav S, Barkume M, Sen S. et al. Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg Chem. 2020;105:104447. https://doi.org/10.1016/j.bioorg.2020.104447.
Article CAS PubMed Google Scholar
Hassan RM, Ali IH, Abdel-Maksoud MS, Abdallah HMI, El Kerdawy AM, Sciandra F. et al. Design and synthesis of novel quinazolinone-based fibrates as PPARα agonists with antihyperlipidemic activity. Arch Pharm (Weinheim). 2022;355:2100399. https://doi.org/10.1002/ardp.202100399.
Wang G, Li C, He L, Lei K, Wang F, Pu Y. et al. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg Med Chem. 2014;22:2060–79. https://doi.org/10.1016/j.bmc.2014.02.028.
Article CAS PubMed Google Scholar
Wang G, Peng F, Cao D, Yang Z, Han X, Liu J. et al. Design, synthesis and biological evaluation of millepachine derivatives as a new class of tubulin polymerization inhibitors. Bioorg Med Chem. 2013;21:6844–54. https://doi.org/10.1016/j.bmc.2013.02.002.
Article CAS PubMed Google Scholar
Havrylyuk D, Roman O, Lesyk R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline-thiazolidine-based hybrids. Eur J Med Chem. 2016;113:145–66. https://doi.org/10.1016/j.ejmech.2016.02.030.
Article CAS PubMed PubMed Central Google Scholar
Qiu KM, Yan R, Xing M, Wang HH, Cui HE, Gong HB. et al. Synthesis, biological evaluation and molecular modeling of dihydro-pyrazolyl-thiazolinone derivatives as potential COX-2 inhibitors. Bioorg Med Chem. 2012;20:6648–54. https://doi.org/10.1016/j.bmc.2012.09.021.
Article CAS PubMed Google Scholar
Amnerkar ND, Bhusari KP. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur J Med Chem. 2010;45:149–59. https://doi.org/10.1016/j.ejmech.2009.09.037.
Article CAS PubMed Google Scholar
Lv P-C, Li H-Q, Sun J, Zhou Y, Zhu H-L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg Med Chem. 2010;18:4606–14. https://doi.org/10.1016/j.bmc.2010.05.034.
留言 (0)