Hochhaus, A. et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl. J. Med. 376, 917–927 (2017).
Article PubMed PubMed Central CAS Google Scholar
Jiang, V. C. et al. Cotargeting of BTK and MALT1 overcomes resistance to BTK inhibitors in mantle cell lymphoma. J. Clin. Invest. 133, e165694 (2023).
Article PubMed PubMed Central CAS Google Scholar
Shaffer, A. L. 3rd et al. Overcoming acquired epigenetic resistance to BTK inhibitors. Blood Cancer Discov 2, 630–647 (2021).
Article PubMed PubMed Central CAS Google Scholar
Kadri, S. et al. Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL. Blood Adv. 1, 715–727 (2017).
Article PubMed PubMed Central CAS Google Scholar
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
Article PubMed CAS Google Scholar
Sun, Y. et al. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia 33, 2105–2110 (2019).
Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-Mediated Degradation. Biochemistry 57, 3564–3575 (2018).
Article PubMed CAS Google Scholar
Shorer Arbel, Y. et al. Proteolysis targeting chimeras for BTK efficiently inhibit B-cell receptor signaling and can overcome ibrutinib resistance in CLL cells. Front. Oncol. 11, 646971 (2021).
Article PubMed PubMed Central Google Scholar
Cao, S. et al. Proteolysis-targeting chimera (PROTAC) modification of dovitinib enhances the antiproliferative effect against FLT3-ITD-positive acute myeloid leukemia cells. J. Med. Chem. 64, 16497–16511 (2021).
Article PubMed CAS Google Scholar
Zhao, Q. et al. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting Von Hippel-Lindau (VHL) E3 ubiquitin ligase. J. Med. Chem. 62, 9281–9298 (2019).
Article PubMed CAS Google Scholar
Sun, N. et al. Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur. J. Med. Chem. 193, 112190 (2020).
Article PubMed CAS Google Scholar
Liu, J. et al. TF-PROTACs enable targeted degradation of transcription factors. J. Am. Chem. Soc. 143, 8902–8910 (2021).
Article PubMed PubMed Central CAS Google Scholar
Bond, M. J. et al. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 (2020).
Article PubMed PubMed Central CAS Google Scholar
Samarasinghe, K. T. G. et al. OligoTRAFTACs: a generalizable method for transcription factor degradation. RSC Chem. Biol. 3, 1144–1153 (2022).
Article PubMed PubMed Central CAS Google Scholar
Wu, S. et al. BRD4 PROTAC degrader ARV-825 inhibits T-cell acute lymphoblastic leukemia by targeting ‘Undruggable’ Myc-pathway genes. Cancer Cell Int. 21, 230 (2021).
Article PubMed PubMed Central CAS Google Scholar
Xu, Y. et al. The aptamer-based RNA-PROTAC. Bioorg. Med. Chem. 86, 117299 (2023).
Article PubMed CAS Google Scholar
Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).
Article PubMed CAS Google Scholar
Kenten John, H. & Roberts Steven, F. Controlling Protein Levels in Eucaryotic Organisms. US7273920 (1999).
Liu, Z. et al. An overview of PROTACs: a promising drug discovery paradigm. Mol. biomed. 3, 46 (2022).
Article PubMed PubMed Central CAS Google Scholar
Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).
Article PubMed CAS Google Scholar
Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).
Paudel, R. R. et al. Targeted protein degradation via lysosomes. Biochemistry 62, 564–579 (2023).
Article PubMed CAS Google Scholar
Eldridge, A. G. & O’Brien, T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 17, 4–13 (2010).
Article PubMed CAS Google Scholar
Kimura, Y. & Tanaka, K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J. Biochem. 147, 793–798 (2010).
Article PubMed CAS Google Scholar
Cecchini, C., Pannilunghi, S., Tardy, S. & Scapozza, L. From conception to development: investigating PROTACs features for improved cell permeability and successful protein degradation. Front Chem 9, 672267 (2021).
Article PubMed PubMed Central CAS Google Scholar
Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).
Article PubMed PubMed Central CAS Google Scholar
Edmondson, S. D., Yang, B. & Fallan, C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: Recent progress and future challenges. Bioorg. Med. Chem. Lett. 29, 1555–1564 (2019).
Article PubMed CAS Google Scholar
Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).
Article PubMed PubMed Central CAS Google Scholar
Schneekloth, A. R., Pucheault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904–5908 (2008).
Article PubMed CAS Google Scholar
Li, J. et al. A platform for the rapid synthesis of molecular glues (Rapid-Glue) under miniaturized conditions for direct biological screening. Eur. J. Med. Chem. 258, 115567 (2023).
Article PubMed PubMed Central CAS Google Scholar
Dewey, J. A. et al. Molecular glue discovery: current and future approaches. J. Med. Chem. 66, 9278–9296 (2023).
Article PubMed PubMed Central CAS Google Scholar
Domostegui, A., Nieto-Barrado, L., Perez-Lopez, C. & Mayor-Ruiz, C. Chasin
留言 (0)