First description of novel compound heterozygous mutations in HYCC1: clinical evaluations and molecular analysis in patient with hypomyelinating leukodystrophy-5 with retrospective view

Karalok ZS, Gurkasb E, Aydinc K, Ceylaner S. Hypomyelination and congenital cataract: three siblings presentation. J Pediatr Neurosci. 2020;15:270–3.

Article  PubMed  PubMed Central  Google Scholar 

Zara F, Biancheri R, Bruno C, Bordo L, Assereto S, Gazzerro E, et al. Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nat Genet. 2006;38:1111–3.

Article  PubMed  CAS  Google Scholar 

Biancheri R, Zara F, Bruno C, Rossi A, Bordo L, Gazzerro E, et al. Phenotypic characterization of hypomyelination and congenital cataract. Ann Neurol. 2007;62:121–7.

Article  PubMed  Google Scholar 

Gazzerro E, Baldassari S, Giacomini C, Musante V, Fruscione F, Padula VL, et al. Hyccin, the molecule mutated in the leukodystrophy hypomyelination and congenital cataract (HCC), is a neuronal protein. PLoS ONE. 2012;7:e32180.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baskin JM, Wu X, Christiano R, Oh MS, Schauder CM, Gazzerro E, et al. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat Cell Biol. 2016;18:132–8.

Article  PubMed  CAS  Google Scholar 

Wolf NI, Biancheri R, Zara F, Bruno C, Gazzerro E, Rossi A, et al. Hypomyelination and congenital cataract. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. http://www.ncbi.nlm.nih.gov/books/NBK2587/.

Rossi A, Biancheri R, Zara F, Bruno C, Uziel G, van der Knaap MS, et al. Hypomyelination and congenital cataract: neuroimaging features of a novel inherited white matter disorder. Am J Neuroradiol. 2008;29:301–5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Steenweg ME, Vanderver A, Blaser S, Bizzi A, de Koning TJ, Mancini GMS, et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010;133:2971–82.

Article  PubMed  PubMed Central  Google Scholar 

Lewin HA, Stewart-Haynes JA. A simple method for DNA extraction from leukocytes for use in PCR. BioTechniques. 1992;13:522–4.

PubMed  CAS  Google Scholar 

Lorenz R, Bernhart S, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler P, et al. ViennaRNA package 2.0. Algorithms Mol Biol. 2011;6:26.

Article  PubMed  PubMed Central  Google Scholar 

Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.

Article  PubMed  PubMed Central  Google Scholar 

Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N, Ashkenazy H, et al. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010;38:W529–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang D, Dai L, Zhou Z, Hu J, Bai Y, Guo H. Homozygosity mapping and whole exome sequencing reveal a novel ERCC8 mutation in a Chinese consanguineous family with unique cerebellar ataxia. Clin Chim Acta. 2019;494:64–70.

Article  PubMed  CAS  Google Scholar 

Alirezaie N, Kernohan KD, Hartley T, Majewski J, Hocking TD. ClinPred: prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants. Am J Hum Genet. 2018;103:474–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;76:7.20.1–41.

Google Scholar 

Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–74.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Buß O, Rudat J, Ochsenreither K. FoldX as protein engineering tool: better than random based approaches? Comput Struct Biotechnol J. 2018;16:25–33.

Article  PubMed  PubMed Central  Google Scholar 

Paladin L, Piovesan D, Tosatto SCE. SODA: prediction of protein solubility from disorder and aggregation propensity. Nucleic Acids Res. 2017;45:W236–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Källberg M, Margaryan G, Wang S, Ma J, Xu J. RaptorX server: a resource for template-based protein structure modeling. In: Kihara D, editor. Protein structure prediction (Methods in molecular biology). New York, NY: Springer; 2014. pp. 17–27. https://doi.org/10.1007/978-1-4939-0366-5_2.

Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–23.

Article  PubMed  CAS  Google Scholar 

Traverso M, Yuregir OO, Mimouni-Bloch A, Rossi A, Aslan H, Gazzerro E, et al. Hypomyelination and congenital cataract: Identification of novel mutations in two unrelated families. Eur J Paediatr Neurol. 2013;17:108–11.

Article  PubMed  Google Scholar 

Dhaunchak AS, Colman DR, Nave KA. Misalignment of PLP/DM20 transmembrane domains determines protein misfolding in Pelizaeus–Merzbacher disease. J Neurosci. 2011;31:14961–71.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu N, Yamauchi J, Shooter EM. Recessive, but not dominant, mutations in peripheral myelin protein 22 gene show unique patterns of aggregation and intracellular trafficking. Neurobiol Dis. 2004;17:300–9.

Article  PubMed  CAS  Google Scholar 

Miyamoto Y, Torii T, Eguchi T, Nakamura K, Tanoue A, Yamauchi J. Hypomyelinating leukodystrophy-associated missense mutant of FAM126A/hyccin/DRCTNNB1A aggregates in the endoplasmic reticulum. J Clin Neurosci. 2014;21:1033–9.

Article  PubMed  CAS  Google Scholar 

Southwood CM, Garbern J, Jiang W, Gow A. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron. 2002;36:585–96.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dionnet E, Defour A, Da Silva N, Salvi A, Lévy N, Krahn M, et al. Splicing impact of deep exonic missense variants in CAPN3 explored systematically by minigene functional assay. Hum Mutat. 2020;41:1797–810.

Article  PubMed  CAS  Google Scholar 

Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A, Zode G. Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J. 2023;290:5248–69.

Article  PubMed  CAS  Google Scholar 

Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Hum Genet. 2017;136:1093–111.

Article  PubMed  CAS  Google Scholar 

Kraoua I, Bouyacoub Y, Drissi C, Chargui M, Rebai I, Chebil A, et al. Hypomyelination and congenital cataract: clinical, imaging, and genetic findings in three Tunisian families and literature review. Neuropediatrics. 2021;52:302–9.

Article  PubMed  CAS  Google Scholar 

Biancheri R, Zara F, Rossi A, Mathot M, Nassogne MC, Yalcinkaya C, et al. Hypomyelination and congenital cataract: broadening the clinical phenotype. Arch Neurol. 2011;68:1191.

Article  PubMed  Google Scholar 

Troncoso M, Balut F, Witting S, Rubilar C, Carrera J, Cartes F, et al. Hypomyelination and Congenital Cataract: Identification of a Novel likely pathogenic c.414+1G>A in FAM126A gene Variant. Clin. Case Rep. 2021;9:e04171.

Ugur SA, Tolun A. A deletion in DRCTNNB1A associated with hypomyelination and juvenile onset cataract. Eur J Hum Genet. 2008;16:261–4.

留言 (0)

沒有登入
gif