Paluch, E. K., Aspalter, I. M. & Sixt, M. Focal adhesion-independent cell migration. Annu. Rev. Cell Dev. Biol. 32, 469–490 (2016).
Article CAS PubMed Google Scholar
Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).
Article CAS PubMed Google Scholar
Votýpka, J., Modrý, D., Oborník, M., Šlapeta, J. & Lukeš, J. in Handbook of the Protists (eds Archibald, J. M. et al.) 567–624 (Springer, 2017).
Frénal, K., Dubremetz, J.-F., Lebrun, M. & Soldati-Favre, D. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 15, 645–660 (2017).
Heintzelman, M. B. Cellular and molecular mechanics of gliding locomotion in eukaryotes. Int. Rev. Cytol. 251, 79–129 (2006).
Article CAS PubMed Google Scholar
Tardieux, I. & Baum, J. Reassessing the mechanics of parasite motility and host-cell invasion. J. Cell Biol. 214, 507–515 (2016).
Article CAS PubMed PubMed Central Google Scholar
Vigetti, L. & Tardieux, I. Fostering innovation to solve the biomechanics of microbe–host interactions: focus on the adhesive forces underlying Apicomplexa parasite biology. Biol. Cell 115, e202300016 (2023).
Yahata, K. Gliding motility of Plasmodium merozoites.Proc. Natl Acad. Sci. USA 118, e2114442118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Martinez, M. et al. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography. Nat. Commun. 14, 4800 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ripp, J. et al. Malaria parasites differentially sense environmental elasticity during transmission. EMBO Mol. Med. 13, e13933 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hu, K. et al. Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol. Biol. Cell 13, 593–606 (2002).
Article CAS PubMed PubMed Central Google Scholar
Harding, C. R. & Frischknecht, F. The riveting cellular structures of apicomplexan parasites. Trends Parasitol. 36, 979–991 (2020).
Article CAS PubMed Google Scholar
Ferreira, J. L. et al. Variable microtubule architecture in the malaria parasite. Nat. Commun. 14, 1216 (2023).
Article CAS PubMed PubMed Central Google Scholar
Dos Santos Pacheco, N. et al. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat. Microbiol. 7, 1777–1790 (2022).
Carruthers, V. B. & Tomley, F. M. Microneme proteins in apicomplexans. Subcell. Biochem. 47, 33–45 (2008).
Article PubMed PubMed Central Google Scholar
Hellmann, J. K. et al. Environmental constraints guide migration of malaria parasites during transmission. PLoS Pathog. 7, e1002080 (2011).
Article CAS PubMed PubMed Central Google Scholar
Leung, J. M., Rould, M. A., Konradt, C., Hunter, C. A. & Ward, G. E. Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional live motility assay. PLoS ONE 9, e85763 (2014).
Article PubMed PubMed Central Google Scholar
Håkansson, S., Morisaki, H., Heuser, J. & Sibley, L. D. Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol. Biol. Cell 10, 3539–3547 (1999).
Article PubMed PubMed Central Google Scholar
Frixione, E., Mondragón, R. & Meza, I. Kinematic analysis of Toxoplasma gondii motility. Cell Motil. Cytoskeleton 34, 152–163 (1996).
Article CAS PubMed Google Scholar
Heintzelman, M. B. Gliding motility in apicomplexan parasites. Semin. Cell Dev. Biol. 46, 135–142 (2015).
Hueschen, C. L. et al. Emergent actin flows explain diverse parasite gliding modes. Preprint at BioRxiv https://doi.org/10.1101/2022.06.08.495399 (2022).
Pavlou, G. et al. Coupling polar adhesion with traction, spring, and torque forces allows high-speed helical migration of the protozoan parasite Toxoplasma.ACS Nano 14, 7121–7139 (2020).
Article CAS PubMed Google Scholar
Stadler, R. V., Nelson, S. R., Warshaw, D. M. & Ward, G. E. A circular zone of attachment to the extracellular matrix provides directionality to the motility of Toxoplasma gondii in 3D. eLife 11, e85171 (2022).
Article CAS PubMed PubMed Central Google Scholar
Carruthers, V. B., Hakansson, S., Giddings, O. K. & Sibley, L. D. Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect. Immun. 68, 4005–4011 (2000).
Article CAS PubMed PubMed Central Google Scholar
Gras, S. et al. Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo. Wellcome Open Res. 2, 32 (2017).
Article PubMed PubMed Central Google Scholar
Varma, S., Bureau, L. & Débarre, D. The conformation of thermoresponsive polymer brushes probed by optical reflectivity. Langmuir 32, 3152–3163 (2016).
Article CAS PubMed Google Scholar
Huynh, M.-H. & Carruthers, V. B. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog. 2, e84 (2006).
Article PubMed PubMed Central Google Scholar
Gambarotto, D., Hamel, V. & Guichard, P. Ultrastructure expansion microscopy (U-ExM). Methods Cell. Biol. 161, 57–81 (2021).
Brown, K. M., Lourido, S. & Sibley, L. D. Serum albumin stimulates protein kinase G-dependent microneme secretion in Toxoplasma gondii. J. Biol. Chem. 291, 9554–9565 (2016).
Article CAS PubMed PubMed Central Google Scholar
Schuksz, M. et al. Surfen, a small molecule antagonist of heparan sulfate. Proc. Natl Acad. Sci. USA 105, 13075–13080 (2008).
Article CAS PubMed PubMed Central Google Scholar
Perschmann, N., Hellmann, J. K., Frischknecht, F. & Spatz, J. P. Induction of malaria parasite migration by synthetically tunable microenvironments. Nano Lett. 11, 4468–4474 (2011).
Article CAS PubMed Google Scholar
Chan, A. et al. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 12, RP85654 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lourido, S., Tang, K. & Sibley, L. D. Distinct signalling pathways control Toxoplasma
留言 (0)