Submicrometre spatiotemporal characterization of the Toxoplasma adhesion strategy for gliding motility

Paluch, E. K., Aspalter, I. M. & Sixt, M. Focal adhesion-independent cell migration. Annu. Rev. Cell Dev. Biol. 32, 469–490 (2016).

Article  CAS  PubMed  Google Scholar 

Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

Article  CAS  PubMed  Google Scholar 

Votýpka, J., Modrý, D., Oborník, M., Šlapeta, J. & Lukeš, J. in Handbook of the Protists (eds Archibald, J. M. et al.) 567–624 (Springer, 2017).

Frénal, K., Dubremetz, J.-F., Lebrun, M. & Soldati-Favre, D. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 15, 645–660 (2017).

Article  PubMed  Google Scholar 

Heintzelman, M. B. Cellular and molecular mechanics of gliding locomotion in eukaryotes. Int. Rev. Cytol. 251, 79–129 (2006).

Article  CAS  PubMed  Google Scholar 

Tardieux, I. & Baum, J. Reassessing the mechanics of parasite motility and host-cell invasion. J. Cell Biol. 214, 507–515 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vigetti, L. & Tardieux, I. Fostering innovation to solve the biomechanics of microbe–host interactions: focus on the adhesive forces underlying Apicomplexa parasite biology. Biol. Cell 115, e202300016 (2023).

Article  PubMed  Google Scholar 

Yahata, K. Gliding motility of Plasmodium merozoites.Proc. Natl Acad. Sci. USA 118, e2114442118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez, M. et al. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography. Nat. Commun. 14, 4800 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ripp, J. et al. Malaria parasites differentially sense environmental elasticity during transmission. EMBO Mol. Med. 13, e13933 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, K. et al. Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol. Biol. Cell 13, 593–606 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harding, C. R. & Frischknecht, F. The riveting cellular structures of apicomplexan parasites. Trends Parasitol. 36, 979–991 (2020).

Article  CAS  PubMed  Google Scholar 

Ferreira, J. L. et al. Variable microtubule architecture in the malaria parasite. Nat. Commun. 14, 1216 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dos Santos Pacheco, N. et al. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat. Microbiol. 7, 1777–1790 (2022).

Article  PubMed  Google Scholar 

Carruthers, V. B. & Tomley, F. M. Microneme proteins in apicomplexans. Subcell. Biochem. 47, 33–45 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Hellmann, J. K. et al. Environmental constraints guide migration of malaria parasites during transmission. PLoS Pathog. 7, e1002080 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung, J. M., Rould, M. A., Konradt, C., Hunter, C. A. & Ward, G. E. Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional live motility assay. PLoS ONE 9, e85763 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Håkansson, S., Morisaki, H., Heuser, J. & Sibley, L. D. Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol. Biol. Cell 10, 3539–3547 (1999).

Article  PubMed  PubMed Central  Google Scholar 

Frixione, E., Mondragón, R. & Meza, I. Kinematic analysis of Toxoplasma gondii motility. Cell Motil. Cytoskeleton 34, 152–163 (1996).

Article  CAS  PubMed  Google Scholar 

Heintzelman, M. B. Gliding motility in apicomplexan parasites. Semin. Cell Dev. Biol. 46, 135–142 (2015).

Article  PubMed  Google Scholar 

Hueschen, C. L. et al. Emergent actin flows explain diverse parasite gliding modes. Preprint at BioRxiv https://doi.org/10.1101/2022.06.08.495399 (2022).

Pavlou, G. et al. Coupling polar adhesion with traction, spring, and torque forces allows high-speed helical migration of the protozoan parasite Toxoplasma.ACS Nano 14, 7121–7139 (2020).

Article  CAS  PubMed  Google Scholar 

Stadler, R. V., Nelson, S. R., Warshaw, D. M. & Ward, G. E. A circular zone of attachment to the extracellular matrix provides directionality to the motility of Toxoplasma gondii in 3D. eLife 11, e85171 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carruthers, V. B., Hakansson, S., Giddings, O. K. & Sibley, L. D. Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect. Immun. 68, 4005–4011 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gras, S. et al. Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo. Wellcome Open Res. 2, 32 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Varma, S., Bureau, L. & Débarre, D. The conformation of thermoresponsive polymer brushes probed by optical reflectivity. Langmuir 32, 3152–3163 (2016).

Article  CAS  PubMed  Google Scholar 

Huynh, M.-H. & Carruthers, V. B. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog. 2, e84 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Gambarotto, D., Hamel, V. & Guichard, P. Ultrastructure expansion microscopy (U-ExM). Methods Cell. Biol. 161, 57–81 (2021).

Article  PubMed  Google Scholar 

Brown, K. M., Lourido, S. & Sibley, L. D. Serum albumin stimulates protein kinase G-dependent microneme secretion in Toxoplasma gondii. J. Biol. Chem. 291, 9554–9565 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schuksz, M. et al. Surfen, a small molecule antagonist of heparan sulfate. Proc. Natl Acad. Sci. USA 105, 13075–13080 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perschmann, N., Hellmann, J. K., Frischknecht, F. & Spatz, J. P. Induction of malaria parasite migration by synthetically tunable microenvironments. Nano Lett. 11, 4468–4474 (2011).

Article  CAS  PubMed  Google Scholar 

Chan, A. et al. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 12, RP85654 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lourido, S., Tang, K. & Sibley, L. D. Distinct signalling pathways control Toxoplasma

留言 (0)

沒有登入
gif