Ribosomal proteins in hepatocellular carcinoma: mysterious but promising

Mikhaylina AO, Nikonova EY, Kostareva OS, et al. [Regulation of ribosomal protein synthesis in Prokaryotes] [J]. Mol Biol (Mosk). 2021;55(1):20–41. https://doi.org/10.31857/S0026898421010110.

Article  CAS  PubMed  Google Scholar 

Yi YW, You KS, Park JS, et al. Ribosomal protein S6: a potential therapeutic target against Cancer? [J]. Int J Mol Sci. 2021;23(1). https://doi.org/10.3390/ijms23010048.

Ma X, Li Y, Zhao B. Ribosomal protein L5 (RPL5)/ E2F transcription factor 1 (E2F1) signaling suppresses breast cancer progression via regulating endoplasmic reticulum stress and autophagy [J]. Bioengineered. 2022;13(4):8076–86. https://doi.org/10.1080/21655979.2022.2052672.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pecoraro A, Pagano M, Russo G, et al. Ribosome Biogenesis and Cancer: overview on ribosomal proteins [J]. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22115496.

Penzo M, Montanaro L, Trere D, et al. The Ribosome Biogenesis-Cancer connection [J]. Cells. 2019;8(1). https://doi.org/10.3390/cells8010055.

Russo A, Russo G. Ribosomal Proteins Control or bypass p53 during Nucleolar stress [J]. Int J Mol Sci. 2017;18(1). https://doi.org/10.3390/ijms18010140.

Kim JH, Jung JH, Lee HJ, et al. UBE2M drives Hepatocellular Cancer Progression as a p53 negative Regulator by binding to MDM2 and ribosomal protein L11 [J]. Cancers (Basel). 2021;13(19). https://doi.org/10.3390/cancers13194901.

Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification [J]. Adv Cancer Res. 2021;149:1–61. https://doi.org/10.1016/bs.acr.2020.10.001.

Article  CAS  PubMed  Google Scholar 

Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management [J]. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. https://doi.org/10.1038/s41575-019-0186-y.

Article  PubMed  PubMed Central  Google Scholar 

Kudo M, Finn RS, Qin S, et al. Lenvatinib versus Sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial [J]. Lancet. 2018;391(10126):1163–73. https://doi.org/10.1016/S0140-6736(18)30207-1.

Article  CAS  PubMed  Google Scholar 

Zhu YJ, Zheng B, Wang HY, et al. New knowledge of the mechanisms of sorafenib resistance in liver cancer [J]. Acta Pharmacol Sin. 2017;38(5):614–22. https://doi.org/10.1038/aps.2017.5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowman JC, Petrov AS, Frenkel-Pinter M, et al. Root of the Tree: the significance, evolution, and origins of the ribosome [J]. Chem Rev. 2020;120(11):4848–78. https://doi.org/10.1021/acs.chemrev.9b00742.

Article  CAS  PubMed  Google Scholar 

Bhavsar RB, Makley LN, Tsonis PA. The other lives of ribosomal proteins [J]. Hum Genomics. 2010;4(5):327–44. https://doi.org/10.1186/1479-7364-4-5-327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu L, Chao W, Zhong S, et al. Eukaryotic ribosomal protein S5 of the 40S subunit: structure and function [J]. Int J Mol Sci. 2023;24(4). https://doi.org/10.3390/ijms24043386.

Artero-Castro A, Perez-Alea M, Feliciano A, et al. Disruption of the ribosomal P complex leads to stress-induced autophagy [J]. Autophagy. 2015;11(9):1499–519. https://doi.org/10.1080/15548627.2015.1063764.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Z, Xu Q, Wang X, et al. RPLP1 promotes tumor metastasis and is associated with a poor prognosis in triple-negative breast cancer patients [J]. Cancer Cell Int. 2018;18:170. https://doi.org/10.1186/s12935-018-0658-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lam YW, Lamond AI, Mann M, et al. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins [J]. Curr Biol. 2007;17(9):749–60. https://doi.org/10.1016/j.cub.2007.03.064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caldarola S, De Stefano MC, Amaldi F, et al. Synthesis and function of ribosomal proteins–fading models and new perspectives [J]. FEBS J. 2009;276(12):3199–210. https://doi.org/10.1111/j.1742-4658.2009.07036.x.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Sohn JH, Warner JR. Autoregulation in the biosynthesis of ribosomes [J]. Mol Cell Biol. 2003;23(2):699–707. https://doi.org/10.1128/MCB.23.2.699-707.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fewell SW, Woolford JL Jr. Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA [J]. Mol Cell Biol. 1999;19(1):826–34. https://doi.org/10.1128/MCB.19.1.826.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petibon C, Parenteau J, Catala M, et al. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes [J]. Nucleic Acids Res. 2016;44(8):3878–91. https://doi.org/10.1093/nar/gkw140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perry RP. The architecture of mammalian ribosomal protein promoters [J]. BMC Evol Biol. 2005;5:15. https://doi.org/10.1186/1471-2148-5-15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Harrison P, Gerstein M. Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome [J]. Genome Res. 2002;12(10):1466–82. https://doi.org/10.1101/gr.331902.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner M, Perry RP. Characterization of the multigene family encoding the mouse S16 ribosomal protein: strategy for distinguishing an expressed gene from its processed pseudogene counterparts by an analysis of total genomic DNA [J]. Mol Cell Biol. 1985;5(12):3560–76. https://doi.org/10.1128/mcb.5.12.3560-3576.1985.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Hu H, Li X. Shared distal regulatory regions may contribute to the coordinated expression of human ribosomal protein genes [J]. Genomics. 2020;112(4):2886–93. https://doi.org/10.1016/j.ygeno.2020.03.028.

Article  CAS  PubMed  Google Scholar 

Tang H, Hornstein E, Stolovich M, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation [J]. Mol Cell Biol. 2001;21(24):8671–83. https://doi.org/10.1128/MCB.21.24.8671-8683.2001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level [J]. Eur J Biochem. 2000;267(21):6321–30. https://doi.org/10.1046/j.1432-1327.2000.01719.x.

Article  CAS  PubMed  Google Scholar 

Malygin AA, Parakhnevitch NM, Ivanov AV, et al. Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism [J]. Nucleic Acids Res. 2007;35(19):6414–23. https://doi.org/10.1093/nar/gkm701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanov AV, Malygin AA, Karpova GG. Human ribosomal protein S26 suppresses the splicing of its pre-mRNA [J]. Biochim Biophys Acta. 2005;1727(2):134–40. https://doi.org/10.1016/j.bbaexp.2004.12.011.

Article  CAS  PubMed  Google Scholar 

Odintsova TI, Muller EC, Ivanov AV, et al. Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing [J]. J Protein Chem. 2003;22(3):249–58. https://doi.org/10.1023/a:1025068419698.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif