Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of papillary thyroid carcinoma via the BRAF-ERK1/2-P53 signaling pathway

Megwalu UC, Moon PK (2022) Thyroid Cancer Incidence and Mortality trends in the United States: 2000–2018. Thyroid 32:560–570. https://doi.org/10.1089/thy.2021.0662

Article  PubMed  CAS  Google Scholar 

Lim H, Devesa SS, Sosa JA et al (2017) Trends in thyroid Cancer incidence and mortality in the United States, 1974–2013. JAMA 317:1338–1348. https://doi.org/10.1001/jama.2017.2719

Article  PubMed  PubMed Central  Google Scholar 

Youssef MR, Reisner ASC, Attia AS et al (2021) Obesity and the prevention of thyroid cancer: impact of body mass index and weight change on developing thyroid cancer - pooled results of 24 million cohorts. Oral Oncol 112:105085. https://doi.org/10.1016/j.oraloncology.2020.105085

Article  PubMed  Google Scholar 

Lee J, Lee CR, Ku CR et al (2015) Association between Obesity and BRAFV600E mutation status in patients with papillary thyroid Cancer. Ann Surg Oncol 22(Suppl 3):S683–690. https://doi.org/10.1245/s10434-015-4765-z

Article  PubMed  Google Scholar 

Hu MJ, Zhao HH, Li GA et al (2021) Body mass index and weight gain after middle adulthood are associated with risk of papillary thyroid cancer: a case-control study. Cancer Epidemiol 75:102039. https://doi.org/10.1016/j.canep.2021.102039

Article  PubMed  Google Scholar 

Fridman M, Lam AK, Krasko O (2016) Characteristics of young adults of Belarus with Post-chernobyl papillary thyroid carcinoma: a long-term follow-up of patients with early exposure to radiation at the 30th anniversary of the accident. Clin Endocrinol (Oxf) 85:971–978. https://doi.org/10.1111/cen.13137

Article  PubMed  Google Scholar 

Furukawa K, Preston D, Funamoto S et al (2013) Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer 132:1222–1226. https://doi.org/10.1002/ijc.27749

Article  PubMed  CAS  Google Scholar 

Moghoofei M, Mostafaei S, Nesaei A et al (2019) Epstein-Barr virus and thyroid cancer: the role of viral expressed proteins. J Cell Physiol 234:3790–3799. https://doi.org/10.1002/jcp.27144

Article  PubMed  CAS  Google Scholar 

Antonelli A, Ferri C, Fallahi P et al (2007) Thyroid cancer in HCV-related chronic hepatitis patients: a case-control study. Thyroid 17:447–451. https://doi.org/10.1089/thy.2006.0194

Article  PubMed  CAS  Google Scholar 

Montella M, Pezzullo L, Crispo A et al (2003) Risk of thyroid cancer and high prevalence of hepatitis C virus. Oncol Rep 10:133–136

PubMed  Google Scholar 

Giordano TP, Henderson L, Landgren O et al (2007) Risk of non-hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA 297:2010–2017. https://doi.org/10.1001/jama.297.18.2010

Article  PubMed  CAS  Google Scholar 

Omland LH, Farkas DK, Jepsen P et al (2010) Hepatitis C virus infection and risk of cancer: a population-based cohort study. Clin Epidemiol 2:179–186. https://doi.org/10.2147/clep.s10193

Article  PubMed  PubMed Central  Google Scholar 

Battini JL, Rasko JE, Miller AD (1999) A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci U S A 96:1385–1390. https://doi.org/10.1073/pnas.96.4.1385

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tailor CS, Nouri A, Lee CG et al (1999) Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. Proc Natl Acad Sci U S A 96:927–932. https://doi.org/10.1073/pnas.96.3.927

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang YL, Guo L, Xu S et al (1999) Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nat Genet 21:216–219. https://doi.org/10.1038/6005

Article  PubMed  CAS  Google Scholar 

Chen WC, Li QL, Pan Q et al (2019) Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of tongue squamous cell carcinoma (TSCC) via activation of NF-κB signaling. J Exp Clin Cancer Res 38:167. https://doi.org/10.1186/s13046-019-1155-6

Article  PubMed  PubMed Central  Google Scholar 

Akasu-Nagayoshi Y, Hayashi T, Kawabata A et al (2022) PHOSPHATE exporter XPR1/SLC53A1 is required for the tumorigenicity of epithelial ovarian cancer. Cancer Sci 113:2034–2043. https://doi.org/10.1111/cas.15358

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hu Y, Bai J, Zhou D et al (2022) The miR-4732-5p/XPR1 axis suppresses the invasion, metastasis, and epithelial-mesenchymal transition of lung adenocarcinoma via the PI3K/Akt/GSK3β/Snail pathway. Mol Omics 18:417–429. https://doi.org/10.1039/d1mo00245g

Article  PubMed  CAS  Google Scholar 

Xing M (2007) BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28:742–762. https://doi.org/10.1210/er.2007-0007

Article  PubMed  CAS  Google Scholar 

Xing M, Westra WH, Tufano RP et al (2005) BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90:6373–6379. https://doi.org/10.1210/jc.2005-0987

Article  PubMed  CAS  Google Scholar 

Bálint EE, Vousden KH (2001) Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85:1813–1823. https://doi.org/10.1054/bjoc.2001.2128

Article  PubMed Central  CAS  Google Scholar 

La Perle KM, Jhiang SM, Capen CC (2000) Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol 157:671–677. https://doi.org/10.1016/s0002-9440(10)64577-4

Article  PubMed  PubMed Central  Google Scholar 

McFadden DG, Vernon A, Santiago PM et al (2014) p53 constrains progression to anaplastic thyroid carcinoma in a braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A 111:E1600–1609. https://doi.org/10.1073/pnas.1404357111

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ji J, Xu R, Zhang X et al (2018) Actin like-6A promotes glioma progression through stabilization of transcriptional regulators YAP/TAZ. Cell Death Dis 9:517. https://doi.org/10.1038/s41419-018-0548-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang B, Cheng X, Zhan S et al (2021) MIB1 upregulates IQGAP1 and promotes pancreatic cancer progression by inducing ST7 degradation. Mol Oncol 15:3062–3075. https://doi.org/10.1002/1878-0261.12955

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qiu H, Cao S, Xu R (2021) Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun (Lond) 41:1037–1048. https://doi.org/10.1002/cac2.12197

Article  PubMed  Google Scholar 

Luo H, Xia X, Kim GD et al (2021) Characterizing dedifferentiation of thyroid cancer by integrated analysis. Sci Adv 7. https://doi.org/10.1126/sciadv.abf3657

Xing M, Haugen BR, Schlumberger M (2013) Progress in molecular-based management of differentiated thyroid cancer. Lancet 381:1058–1069. https://doi.org/10.1016/s0140-6736(13)60109-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu YK, Jiang TT, Su YH et al (2024) The potential role of virus infection in the progression of thyroid Cancer. World J Oncol 15:382–393. https://doi.org/10.14740/wjon1830

Article  PubMed  PubMed Central  CAS 

留言 (0)

沒有登入
gif