Phosphoenolpyruvate carboxykinase-2 (PCK2) is a therapeutic target in triple-negative breast cancer

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

Article  CAS  PubMed  Google Scholar 

Marczyk M, Gunasekharan V, Casadevall D, Qing T, Foldi J, Sehgal R et al (2022) Comprehensive analysis of metabolic isozyme targets in cancer. Cancer Res 82(9):1698–1711

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ureta T (1978) The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. Curr Top Cell Regul 13:233–258

Article  CAS  PubMed  Google Scholar 

Ononye SN, Shi W, Wali VB, Aktas B, Jiang T, Hatzis C, Pusztai L (2014) Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets. Breast Cancer Res Treat 148(3):477–488

Article  CAS  PubMed  Google Scholar 

Petrocca F, Altschuler G, Tan SM, Mendillo ML, Yan H, Jerry DJ et al (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 24(2):182–196

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH et al (2014) Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res 16(5):434

Article  PubMed  PubMed Central  Google Scholar 

Choi J, Jung WH, Koo JS (2013) Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology 80(1):41–52

Article  CAS  PubMed  Google Scholar 

McCleland ML, Adler AS, Shang Y, Hunsaker T, Truong T, Peterson D et al (2012) An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res 72(22):5812–5823

Article  CAS  PubMed  Google Scholar 

Yu S, Meng S, Xiang M, Ma H (2021) Phosphoenolpyruvate carboxykinase in cell metabolism: roles and mechanisms beyond gluconeogenesis. Mol Metab 53:101257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendez-Lucas A, Hyrossova P, Novellasdemunt L, Vinals F, Perales JC (2014) Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J Biol Chem 289(32):22090–22102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leithner K, Hrzenjak A, Trotzmuller M, Moustafa T, Kofeler HC, Wohlkoenig C et al (2015) PCK2 activation mediates an adaptive response to glucose depletion in lung cancer. Oncogene 34(8):1044–1050

Article  CAS  PubMed  Google Scholar 

Zhao J, Li J, Fan TWM, Hou SX (2017) Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells. Oncotarget 8(48):83602–83618

Article  PubMed  PubMed Central  Google Scholar 

Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T et al (2015) Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell 60(2):195–207

Article  CAS  PubMed  Google Scholar 

Balsa-Martinez E, Puigserver P (2015) Cancer cells hijack gluconeogenic enzymes to fuel cell growth. Mol Cell 60(4):509–511

Article  CAS  PubMed  Google Scholar 

Leithner K, Triebl A, Trotzmuller M, Hinteregger B, Leko P, Wieser BI et al (2018) The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. Proc Natl Acad Sci U S A 115(24):6225–6230

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattaini KR, Sullivan MR, Vander Heiden MG (2016) The importance of serine metabolism in cancer. J Cell Biol 214(3):249–257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang M, Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16(10):650–662

Article  CAS  PubMed  Google Scholar 

Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

Article  Google Scholar 

Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM (2016) Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res 76(8):2105–2114

Article  CAS  PubMed  Google Scholar 

Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:151002855

Hsieh CH, Li L, Vanhauwaert R, Nguyen KT, Davis MD, Bu G et al (2019) Miro1 marks parkinson’s disease subset and miro1 reducer rescues neuron loss in parkinson’s models. Cell Metab 30(6):1131-1140.e7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J et al (2021) SPOP and OTUD7A control EWS-FLI1 protein stability to govern ewing sarcoma growth. Adv Sci (Weinh) 8(14):e2004846

Article  PubMed  Google Scholar 

Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55(22):9763–9772

Article  CAS  PubMed  Google Scholar 

Alves TC, Pongratz RL, Zhao X, Yarborough O, Sereda S, Shirihai O et al (2015) Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab 22(5):936–947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baptista LPR, Sinatti VV, Da Silva JH, Dardenne LE, Guimaraes AC (2019) Computational evaluation of natural compounds as potential inhibitors of human PEPCK-M: an alternative for lung cancer therapy. Adv Appl Bioinform Chem 12:15–32

PubMed  PubMed Central  Google Scholar 

Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS et al (2017) Defining a cancer dependency map. Cell 170(3):564-576.e16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhagavan NV (2002) Carbohydrate metabolism II: gluconeogenesis, glycogen synthesis and breakdown, and alternative pathways. Medical biochemistry. Elsevier, Amsterdam, pp 275–305

Chapter  Google Scholar 

留言 (0)

沒有登入
gif