Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674
Article CAS PubMed Google Scholar
Marczyk M, Gunasekharan V, Casadevall D, Qing T, Foldi J, Sehgal R et al (2022) Comprehensive analysis of metabolic isozyme targets in cancer. Cancer Res 82(9):1698–1711
Article CAS PubMed PubMed Central Google Scholar
Ureta T (1978) The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. Curr Top Cell Regul 13:233–258
Article CAS PubMed Google Scholar
Ononye SN, Shi W, Wali VB, Aktas B, Jiang T, Hatzis C, Pusztai L (2014) Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets. Breast Cancer Res Treat 148(3):477–488
Article CAS PubMed Google Scholar
Petrocca F, Altschuler G, Tan SM, Mendillo ML, Yan H, Jerry DJ et al (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 24(2):182–196
Article CAS PubMed PubMed Central Google Scholar
Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH et al (2014) Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res 16(5):434
Article PubMed PubMed Central Google Scholar
Choi J, Jung WH, Koo JS (2013) Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology 80(1):41–52
Article CAS PubMed Google Scholar
McCleland ML, Adler AS, Shang Y, Hunsaker T, Truong T, Peterson D et al (2012) An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res 72(22):5812–5823
Article CAS PubMed Google Scholar
Yu S, Meng S, Xiang M, Ma H (2021) Phosphoenolpyruvate carboxykinase in cell metabolism: roles and mechanisms beyond gluconeogenesis. Mol Metab 53:101257
Article CAS PubMed PubMed Central Google Scholar
Mendez-Lucas A, Hyrossova P, Novellasdemunt L, Vinals F, Perales JC (2014) Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J Biol Chem 289(32):22090–22102
Article CAS PubMed PubMed Central Google Scholar
Leithner K, Hrzenjak A, Trotzmuller M, Moustafa T, Kofeler HC, Wohlkoenig C et al (2015) PCK2 activation mediates an adaptive response to glucose depletion in lung cancer. Oncogene 34(8):1044–1050
Article CAS PubMed Google Scholar
Zhao J, Li J, Fan TWM, Hou SX (2017) Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells. Oncotarget 8(48):83602–83618
Article PubMed PubMed Central Google Scholar
Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T et al (2015) Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell 60(2):195–207
Article CAS PubMed Google Scholar
Balsa-Martinez E, Puigserver P (2015) Cancer cells hijack gluconeogenic enzymes to fuel cell growth. Mol Cell 60(4):509–511
Article CAS PubMed Google Scholar
Leithner K, Triebl A, Trotzmuller M, Hinteregger B, Leko P, Wieser BI et al (2018) The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. Proc Natl Acad Sci U S A 115(24):6225–6230
Article CAS PubMed PubMed Central Google Scholar
Mattaini KR, Sullivan MR, Vander Heiden MG (2016) The importance of serine metabolism in cancer. J Cell Biol 214(3):249–257
Article CAS PubMed PubMed Central Google Scholar
Yang M, Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16(10):650–662
Article CAS PubMed Google Scholar
Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70
Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM (2016) Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res 76(8):2105–2114
Article CAS PubMed Google Scholar
Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:151002855
Hsieh CH, Li L, Vanhauwaert R, Nguyen KT, Davis MD, Bu G et al (2019) Miro1 marks parkinson’s disease subset and miro1 reducer rescues neuron loss in parkinson’s models. Cell Metab 30(6):1131-1140.e7
Article CAS PubMed PubMed Central Google Scholar
Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J et al (2021) SPOP and OTUD7A control EWS-FLI1 protein stability to govern ewing sarcoma growth. Adv Sci (Weinh) 8(14):e2004846
Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55(22):9763–9772
Article CAS PubMed Google Scholar
Alves TC, Pongratz RL, Zhao X, Yarborough O, Sereda S, Shirihai O et al (2015) Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab 22(5):936–947
Article CAS PubMed PubMed Central Google Scholar
Baptista LPR, Sinatti VV, Da Silva JH, Dardenne LE, Guimaraes AC (2019) Computational evaluation of natural compounds as potential inhibitors of human PEPCK-M: an alternative for lung cancer therapy. Adv Appl Bioinform Chem 12:15–32
PubMed PubMed Central Google Scholar
Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS et al (2017) Defining a cancer dependency map. Cell 170(3):564-576.e16
Article CAS PubMed PubMed Central Google Scholar
Bhagavan NV (2002) Carbohydrate metabolism II: gluconeogenesis, glycogen synthesis and breakdown, and alternative pathways. Medical biochemistry. Elsevier, Amsterdam, pp 275–305
留言 (0)