Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol. 2019;4:1432–42. https://doi.org/10.1038/s41564-019-0503-9.
Article CAS PubMed Google Scholar
Mendelson M, Morris AM, Thursky K, Pulcini C. How to start an antimicrobial stewardship programme in a hospital. Clin Microbiol Infect. 2020;26:447-53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31445209. https://doi.org/10.1016/j.cmi.2019.08.007
Ambretti S, Bassetti M, Clerici P, Petrosillo N, Tumietto F, Viale P, et al. Screening for carriage of carbapenem-resistant enterobacteriaceae in settings of high endemicity: a position paper from an Italian working group on CRE infections. Antimicrob Resist Infect Control. 2019;8:136. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31423299; https://doi.org/10.1186/s13756-019-0591-6.pdf. https://doi.org/10.1186/s13756-019-0591-6
Meade E, Savage M, Garvey M. Effective antimicrobial solutions for eradicating multi-resistant and beta-lactamase-producing nosocomial gram-negative pathogens. Antibiotics (Basel). 2021;10. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34827221; https://mdpi-res.com/d_attachment/antibiotics/antibiotics-10-01283/article_deploy/antibiotics-10-01283.pdf?version=1634894799. https://doi.org/10.3390/antibiotics10111283
Paño Pardo JR, Serrano Villar S, Ramos Ramos JC, Pintado V. Infections caused by carbapenemase-producing enterobacteriaceae: risk factors, clinical features and prognosis. Enferm Infecc Microbiol Clin. 2014;32 Suppl 4:41-8. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0213005X14701739?via%3Dihub. https://doi.org/10.1016/s0213-005x(14)70173-9
Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing enterobacteriaceae. Clin Microbiol Rev. 2018;31. Available from: https://doi.org/10.1128/cmr.00079-17?download=true. https://doi.org/10.1128/cmr.00079-17
Karaiskos I, Galani I, Papoutsaki V, Galani L, Giamarellou H. Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies. Expert Rev Anti Infect Ther. 2022;20:53-69. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34033499. https://doi.org/10.1080/14787210.2021.1935237
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27. https://doi.org/10.1016/s1473-3099(17)30753-3.
WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health. importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO Available at: https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1
Bush K, Bradford PA. Epidemiology of beta-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32102899; https://doi.org/10.1128/cmr.00047-19?download=true. https://doi.org/10.1128/CMR.00047-19
Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM, et al. Standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother. 2001;45:660-3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11181339. https://doi.org/10.1128/AAC.45.3.660-663.2001
Mojica MF, Bonomo RA, Fast W. B1-Metallo-beta-lactamases: where do we stand? Curr Drug Targets. 2016;17:1029-50. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26424398. https://doi.org/10.2174/1389450116666151001105622
Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-beta-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother. 2020;64. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32690645; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508574/pdf/AAC.00397-20.pdf. https://doi.org/10.1128/AAC.00397-20
Zakhour J, El Ayoubi LW, Kanj SS. Metallo-beta-lactamases: mechanisms, treatment challenges, and future prospects. Expert Rev Anti Infect Ther. 2024;22:189–201. https://doi.org/10.1080/14787210.2024.2311213.
Article CAS PubMed Google Scholar
Ract P, Compain F, Robin F, Decre D, Gallah S, Podglajen I. Synergistic in vitro activity between ATM and amoxicillin-clavulanate against enterobacteriaceae-producing class B and/or class D carbapenemases with or without extended-spectrum beta-lactamases. J Med Microbiol. 2019;68:1292-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31361213. https://doi.org/10.1099/jmm.0.001052
van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015;10:e0123690. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25798828. https://doi.org/10.1371/journal.pone.0123690
Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M, Tome T, et al. A modified carbapenem inactivation method, CIMTris, for carbapenemase production in acinetobacter and pseudomonas species. J Clin Microbiol. 2017;55:3405-10. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28954898. https://doi.org/10.1128/JCM.00893-17
Sfeir MM, Hayden JA, Fauntleroy KA, Mazur C, Johnson JK, Simner PJ, et al. EDTA-modified carbapenem inactivation method: a phenotypic method for detecting metallo-beta-lactamase-producing enterobacteriaceae. J Clin Microbiol. 2019;57:e01757-18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30867235. https://doi.org/10.1128/JCM.01757-18
Lasko MJ, Gill CM, Asempa TE, Nicolau DP. EDTA-modified carbapenem inactivation method (eCIM) for detecting IMP Metallo-beta-lactamase-producing Pseudomonas aeruginosa: an assessment of increasing EDTA concentrations. BMC Microbiol. 2020;20:220. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32690021. https://doi.org/10.1186/s12866-020-01902-8
Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18:1503–7. https://doi.org/10.3201/eid1809.120355.
Article PubMed PubMed Central Google Scholar
Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol. 2012;50:3773–6. https://doi.org/10.1128/jcm.01597-12.
Article CAS PubMed PubMed Central Google Scholar
Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49:3321-4. https://doi.org/10.1128/jcm.00287-11
Hrabák J, Chudácková E, Walková R. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26:103–14. https://doi.org/10.1128/cmr.00058-12.
Article PubMed PubMed Central Google Scholar
Li G, Ye Z, Zhang W, Chen N, Ye Y, Wang Y, et al. Rapid LC-MS/MS detection of different carbapenemase types in carbapenemase-producing Enterobacterales. Eur J Clin Microbiol Infect Dis. 2022;41:815-25. Available from: https://www.ncbi.nlm.nih.gov/pubmed/35396654. https://doi.org/10.1007/s10096-022-04440-5
Boutal H, Vogel A, Bernabeu S, Devilliers K, Creton E, Cotellon G, et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018;73:909-15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29365094. https://doi.org/10.1093/jac/dkx521
Bisiklis A, Papageorgiou F, Frantzidou F, Alexiou-Daniel S. Specific detection of blaVIM and blaIMP metallo-beta-lactamase genes in a single real-time PCR. Clin Microbiol Infect. 2007;13:1201-3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17956573. https://doi.org/10.1111/j.1469-0691.2007.01832.x
Cheng C, Zheng F, Rui Y. Rapid detection of bla NDM, bla KPC, bla IMP, and bla VIM carbapenemase genes in bacteria by loop-mediated isothermal amplification. Microb Drug Resist. 2014;20:533–8.
Article CAS PubMed Google Scholar
Moore NM, Canton R, Carretto E, Peterson LR, Sautter RL, Traczewski MM, et al. Rapid Identification of Five Classes of Carbapenem Resistance Genes Directly from Rectal Swabs by Use of the Xpert Carba-R Assay. J Clin Microbiol. 2017;55:2268-75. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28515213. https://doi.org/10.1128/JCM.00137-17
Girlich D, Oueslati S, Bernabeu S, Langlois I, Begasse C, Arangia N, et al. Evaluation of the BD MAX Check-Points CPO Assay for the Detection of Carbapenemase Producers Directly from Rectal Swabs. J Mol Diagn. 2020;22:294-300. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31751674. https://doi.org/10.1016/j.jmoldx.2019.10.004
Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23:2-22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27890457. https://doi.org/10.1016/j.cmi.2016.11.012
Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using Genomics to Track Global Antimicrobial Resistance. Front Public Health. 2019;7:242. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31552211. https://doi.org/10.3389/fpubh.2019.00242
Su M, Satola SW, Read TD. Genome-Based Prediction of Bacterial Antibiotic Resistance. J Clin Microbiol. 2019;57:e01405-18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30381421. https://doi.org/10.1128/JCM.01405-18
Doyle RM, O'Sullivan DM, Aller SD, Bruchmann S, Clark T, Coello Pelegrin A, et al. Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study. Microb Genom. 2020;6:e000335. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32048983. https://doi.org/10.1099/mgen.0.000335
EUCAST. Rationale for the EUCAST clinical breakpoints, version 1.0 2013. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Fosfomycin_rationale_1.0_20130203.pdf.
EUCAST. Antimicrobial susceptibility testing of colistin - problems detected with several commercially available products. 2019 [Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Warnings/Warnings_docs/Warning_-_colistin_AST.pdf
EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters.Version 14.0, 2024. http://www.eucast.org. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf 2024
EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Aztreonam-avibactam and cefepime-enmetazobactam now available. Available at: https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=585&cHash=b88acafdf84e6e15d8f8df308ef2a514 2024
Wenzler E, Deraedt MF, Harrington AT, Danizger LH. Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-β-lactamase-producing gram-negative pathogens. Diagn Microbiol Infect Dis. 2017;88:352–4. https://doi.org/10.1016/j.diagmicrobio.2017.05.009.
Article CAS PubMed Google Scholar
Collar GDS, Moreira NK, Becker J, Barth AL, Caierão J. Determination of aztreonam/ceftazidime-avibactam synergism and proposal of a new methodology for the evaluation of susceptibility in vitro. Diagn Microbiol Infect Dis. 2024;109: 116236. https://doi.org/10.1016/j.diagmicrobio.2024.116236.
Article CAS PubMed Google Scholar
Simner PJ, Palavecino EL, Satlin MJ, Mathers AJ, Weinstein MP, Lewis JS, 2nd, et al. Potential of inaccurate cefiderocol susceptibility results: a CLSI AST subcommittee advisory. J Clin Microbiol. 2023;61:e0160022. Available from: https://www.ncbi.nlm.nih.gov/pubmed/36946754. https://doi.org/10.1128/jcm.01600-22
EUCAST. Area of Technical Uncertainty (ATU) in antimicrobial susceptibility testing (8 February 2024) Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/Area_of_Technical_Uncertainty_-_guidance_v4_2024.pdf 2024 [
Giani T, Marchese A, Coppo E, Kroumova V, Rossolini GM. VIM-1-producing Pseudomonas mosselii isolates in Italy, predating known VIM-producing index strains. Antimicrob Agents Chemother. 2012;56:2216-7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22290983. https://doi.org/10.1128/AAC.06005-11
Zowawi Hosam M, Sartor Anna L, Balkhy Hanan H, Walsh Timothy R, Al Johani Sameera M, AlJindan Reem Y, et al. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the gulf cooperation council: dominance of OXA-48 and NDM Producers. Antimicrob Agents Chemother. 2014;58:3085-90. https://doi.org/10.1128/aac.02050-13
Al-Agamy MH, Aljallal A, Radwan HH, Shibl AM. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. Journal of Infection and Public Health. 2018;11:64-8. Available from: https://www.sciencedirect.com/science/article/pii/S1876034117301028. https://doi.org/10.1016/j.jiph.2017.03.010
Barantsevich EP, Churkina IV, Barantsevich NE, Pelkonen J, Schlyakhto EV, Woodford N. Emergence of Klebsiella pneumoniae producing NDM-1 carbapenemase in Saint Petersburg, Russia. J Antimicrob Chemother. 2013;68:1204–6. https://doi.org/10.1093/jac/dks503.
Article CAS PubMed Google Scholar
Baraniak A, Izdebski R, Fiett J, Gawryszewska I, Bojarska K, Herda M, et al. NDM-producing Enterobacteriaceae in Poland, 2012-14: inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J Antimicrob Chemother. 2016;71:85-91. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26386745. https://doi.org/10.1093/jac/dkv282
Sandfort M, Hans JB, Fischer MA, Reichert F, Cremanns M, Eisfeld J, et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Euro Surveill. 2022;27:2200926. Available from: https://www.ncbi.nlm.nih.gov/pubmed/36695468. https://doi.org/10.2807/1560-7917.ES.2022.27.50.2200926
Zhao WH, Hu ZQ. Epidemiology and genetics of VIM-type metallo-beta-lactamases in Gram-negative bacilli. Future Microbiol. 2011;6:317-33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21449842. https://doi.org/10.2217/fmb.11.13
Matsumura Y, Peirano G, Motyl MR, Adams MD, Chen L, Kreiswirth B, et al. Global molecular epidemiology of IMP-producing enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e02729-16. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28167555. https://doi.org/10.1128/AAC.02729-16
Kizny Gordon A, Phan HTT, Lipworth SI, Cheong E, Gottlieb T, George S, et al. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital. J Antimicrob Chemother. 2020;75:873-82. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31960024. https://doi.org/10.1093/jac/dkz526
Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasevic AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17:153-63. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27866944. https://doi.org/10.1016/S1473-3099(16)30257-2
Estabrook M, Muyldermans A, Sahm D, Pierard D, Stone G, Utt E. Epidemiology of resistance determinants identified in meropenem-nonsusceptible enterobacterales collected as part of a global surveillance study, 2018 to 2019. Antimicrob Agents Chemother. 2023;67: e0140622. https://doi.org/10.1128/aac.01406-22.
留言 (0)