Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390:298–310.
Ansell SM. Hodgkin lymphoma: 2018 update on diagnosis, risk-stratification, and management. Am J Hematol. 2018;93:704–15.
Michot JM, Lazarovici J, Ghez D, Danu A, Fermé C, Bigorgne A, et al. Challenges and perspectives in the immunotherapy of Hodgkin lymphoma. Eur J Cancer. 2017;85:67–77.
Article CAS PubMed Google Scholar
Lulla P, Heslop HE. Checkpoint inhibition and cellular immunotherapy in lymphoma. Hematol Am Soc Hematol Educ Program. 2016;2016:390–6.
Merryman RW, Armand P, Wright KT, Rodig SJ. Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma. Blood Adv. 2017;1:2643–54.
Article CAS PubMed PubMed Central Google Scholar
Matsuki E, Younes A. Checkpoint inhibitors and other immune therapies for Hodgkin and non-Hodgkin lymphoma. Curr Treat Options Oncol. 2016;17:31.
Article PubMed PubMed Central Google Scholar
Kline J, Godfrey J, Ansell SM. The immune landscape and response to immune checkpoint blockade therapy in lymphoma. Blood. 2020;135:523–33.
Article CAS PubMed Google Scholar
Tarekegn K, Ramosa AC, Singh B, Sequeira Grossa HG, Gupta S. Checkpoint Inhibitors in relapsed/refractory classical Hodgkin lymphoma. World J Oncol. 2021;12:51–4.
Xie W, Medeiros LJ, Li S, Yin CC, Khoury JD, Xu J. PD-1/PD-L1 pathway and its blockade in patients with classic Hodgkin lymphoma and non-Hodgkin large-cell lymphomas. Curr Hematol Malig Rep. 2020;15:372–81.
Perdikis-Prati S, Sheikh S, Bouroumeau A, Lang N. Efficacy of immune checkpoint blockade and biomarkers of response in lymphoma: a narrative review. Biomedicines. 2023;11:1720.
Article CAS PubMed PubMed Central Google Scholar
Hawkes EA, Grigg A, Chong G. Programmed cell death-1 inhibition in lymphoma. Lancet Oncol. 2015;16:e234–45.
Article CAS PubMed Google Scholar
Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17:4232–44.
Article CAS PubMed Google Scholar
Moore KL, Stults NL, Diaz S, Smith DF, Cummings RD, Varki A, et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol. 1992;118:445–56.
Article CAS PubMed Google Scholar
Guyer DA, Moore KL, Lynam EB, Schammel CMG, Rogelj S, McEver RP, et al. P-selectin glycoprotein ligand-1 (PSGL-1) is a ligand for L-selectin in neutrophil aggregation. Blood. 1996;88:2415–21.
Article CAS PubMed Google Scholar
Moore KL, Patel KD, Bruehl RE, Fugang L, Johnson DA, Lichenstein HS, et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995;128:661–71.
Article CAS PubMed Google Scholar
Laszik Z, Jansen P, Cummings R, Tedder T, McEver R, Moore K. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood. 1996;88:3010–21.
Article CAS PubMed Google Scholar
Wilkins PP, Moore KL, McEver RP, Cummings RD. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J Biol Chem. 1995;270:22677–80.
Article CAS PubMed Google Scholar
Walcheck B, Moore KL, McEver RP, Kishimoto TK. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1: A mechanism that amplifies initial leukocyte accumulation on P-selectin in vitro. J Clin Invest. 1996;98:1081–7.
Article CAS PubMed PubMed Central Google Scholar
Borges E, Pendl G, Eytner R, Steegmaier M, Zöllner O, Vestweber D. The binding of T cell-expressed P-selectin glycoprotein ligand-1 to E- and P-selectin is differentially regulated. J Biol Chem. 1997;272:28786–92.
Article CAS PubMed Google Scholar
Martinez M, Joffraud M, Giraud S, Baïsse B, Bernimoulin MP, Schapira M, et al. Regulation of PSGL-1 interactions with L-selectin, P-selectin, and E-selectin: role of human fucosyltransferase-IV and -VII. J Biol Chem. 2005;280:5378–90.
Article CAS PubMed Google Scholar
Matsumoto M, Miyasaka M, Hirata T. P-selectin glycoprotein ligand-1 negatively regulates T-cell immune responses. J Immunol. 2009;183:7204–11.
Article CAS PubMed Google Scholar
Veerman KM, Carlow DA, Shanina I, Priatel JJ, Horwitz MS, Ziltener HJ. PSGL-1 regulates the migration and proliferation of CD8+ T cells under homeostatic conditions. J Immunol. 2012;188:1638–46.
Article CAS PubMed Google Scholar
McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95.
Article CAS PubMed Google Scholar
Tinoco R, Carrette F, Barraza ML, Otero DC, Magaña J, Bosenberg MW, et al. PSGL-1 Is an immune checkpoint regulator that promotes T cell exhaustion. Immunity. 2016;44:1190–203.
Article CAS PubMed PubMed Central Google Scholar
Tinoco R, Neubert EN, Stairiker CJ, Henriquez ML, Bradley LM. PSGL-1 is a T cell intrinsic inhibitor that regulates effector and memory differentiation and responses during viral infection. Front Immunol. 2021;12:677824.
Article CAS PubMed PubMed Central Google Scholar
Viramontes KM, Neubert EN, DeRogatis JM, Tinoco R. PD-1 immune checkpoint blockade and PSGL-1 inhibition synergize to reinvigorate exhausted T cells. Front Immunol. 2022;13:869768.
Article CAS PubMed PubMed Central Google Scholar
DeRogatis JM, Viramontes KM, Neubert EN, Henriquez ML, Guerrero-Juarez CF, Tinoco R. Targeting the PSGL-1 immune checkpoint promotes immunity to PD-1–resistant melanoma. Cancer Immunol Res. 2022;10:612–25.
Article CAS PubMed PubMed Central Google Scholar
Kauffman K, Manfra D, Nowakowska D, Zafari M, Nguyen PA, Phennicie R, et al. PSGL-1 blockade induces classical activation of human tumor-associated macrophages. Cancer Res Commun. 2023;3:2182–94.
Article CAS PubMed PubMed Central Google Scholar
Yang J, Hirata T, Croce K, Merrill-Skoloff G, Tchernychev B, Williams E, et al. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J Exp Med. 1999;190:1769–82.
Article CAS PubMed PubMed Central Google Scholar
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–5.
留言 (0)