Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice

Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab. 2023;35(3):414-428.e3.

Article  CAS  PubMed  Google Scholar 

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

Article  PubMed  Google Scholar 

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Li X, Adams H, Kubena K, Guo S. Etiology of metabolic syndrome and dietary intervention. Int J Mol Sci. 2018;20(1):128.

Article  PubMed  PubMed Central  Google Scholar 

Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7(8):678–93.

Article  CAS  PubMed  Google Scholar 

Copple BL, Li T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res. 2016;104:9–21.

Article  CAS  PubMed  Google Scholar 

Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65(1):350–62.

Article  PubMed  Google Scholar 

Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–28.

Article  CAS  PubMed  Google Scholar 

Zhong J, He X, Gao X, Liu Q, Zhao Y, Hong Y, et al. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. Nat Commun. 2023;14(1):5451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 2023;35(10):1752-1766.e8.

Article  CAS  PubMed  Google Scholar 

Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas M-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42.

Article  PubMed  PubMed Central  Google Scholar 

Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep. 2016;6:32002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71.

Article  CAS  PubMed  Google Scholar 

de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–32.

Article  PubMed  Google Scholar 

Wu F, Shao Q, Xia Q, Hu M, Zhao Y, Wang D, et al. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. Phytomedicine. 2021;83: 153487.

Article  CAS  PubMed  Google Scholar 

Li Y, Zhang L, Ren P, Yang Y, Li S, Qin X, et al. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. Phytomedicine. 2021;93: 153812.

Article  CAS  PubMed  Google Scholar 

Su W-Y, Fan M-L, Li Y, Hu J-N, Cai E-B, Zhu H-Y, et al. 20(S)-ginsenoside Rh1 alleviates T2DM induced liver injury via the Akt/FOXO1 pathway. Chin J Nat Med. 2022;20(9):669–78.

CAS  PubMed  Google Scholar 

Cui S, Pan X-J, Ge C-L, Guo Y-T, Zhang P-F, Yan T-T, et al. Silybin alleviates hepatic lipid accumulation in methionine-choline deficient diet-induced nonalcoholic fatty liver disease in mice via peroxisome proliferator-activated receptor α. Chin J Nat Med. 2021;19(6):401–11.

CAS  PubMed  Google Scholar 

Korio G. Treatment of obesity with western medicine and traditional medicine: based on pubmed and science direct databases. Chin Med Cult. 2019;2(2):99–104.

Article  Google Scholar 

Xiong Y, Wang Y, Chen B, Liu P. Efficacy of Zhikangyin on 35 cases of non-alcoholic fatty liver disease. Hunan J Chin Med. 2013;29(09):56–8.

Google Scholar 

Xiong Y, Zhang Z, Liu P, Wang Y. Efficacy of Chaowei Zhikangyin in treatment of rat model of non-alcoholic fatty liver disease. J Clin Hepatol. 2015;31(01):78–81.

CAS  Google Scholar 

Lin C, Yu B, Liu X, Chen L, Zhang Z, Ye W, et al. Obeticholic acid inhibits hepatic fatty acid uptake independent of FXR in mouse. Biomed Pharmacother. 2022;150: 112984.

Article  CAS  PubMed  Google Scholar 

Li H, Xi Y, Liu H, Xin X. Gypenosides ameliorate high-fat diet-induced non-alcoholic steatohepatitis via farnesoid X receptor activation. Front Nutr. 2022;9: 914079.

Article  PubMed  PubMed Central  Google Scholar 

Zhuge A, Li S, Yuan Y, Han S, Xia J, Wang Q, et al. Microbiota-induced lipid peroxidation impairs obeticholic acid-mediated antifibrotic effect towards nonalcoholic steatohepatitis in mice. Redox Biol. 2023;59: 102582.

Article  CAS  PubMed  Google Scholar 

Liu J, Sun J, Yu J, Chen H, Zhang D, Zhang T, et al. Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism. NPJ Biofilms Microbiomes. 2023;9(1):29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, et al. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology. 2018;68(1):349–60.

Article  PubMed  Google Scholar 

Zhu W, Hong Y, Li Y, Li Y, Zhong J, He X, et al. Microbial and transcriptomic profiling reveals diet-related alterations of metabolism in metabolic disordered mice. Front Nutr. 2022;9: 923377.

Article  PubMed  PubMed Central  Google Scholar 

Sheng L, Jena PK, Hu Y, Wan Y-JY. Age-specific microbiota in altering host inflammatory and metabolic signaling as well as metabolome based on the sex. Hepatobiliary Surg Nutr. 2021;10(1):31–48.

Article  PubMed  PubMed Central  Google Scholar 

Tao X, Huang W, Pan L, Sheng L, Qin Y, Chen L, et al. Optimizing ex vivo culture conditions to study human gut microbiome. ISME Commun. 2023;3(1):38.

Article  PubMed  PubMed Central  Google Scholar 

Bourgin M, Kriaa A, Mkaouar H, Mariaule V, Jablaoui A, Maguin E, Rhimi M. Bile salt hydrolases: at the crossroads of microbiota and human health. Microorganisms. 2021;9(6):1122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 2019;7(1):9.

Article  PubMed  PubMed Central  Google Scholar 

Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe. 2020;28(1):134-146.e4.

Article  CAS  PubMed  PubMed Central

留言 (0)

沒有登入
gif