Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. Osteoarthr Lancet. 2015;386:376–87. https://doi.org/10.1016/S0140-6736(14)60802-3.
Al-Ani Z. Temporomandibular joint osteoarthrosis: a review of clinical aspects and management. Prim Dent J. 2021;10:132–40. https://doi.org/10.1177/2050168420980977.
Kelemen K, Konig J, Czumbel M, Szabo B, Hegyi P, Gerber G, Borbely J, Mikulas K, Schmidt P, Hermann P. Additional splint therapy has no superiority in myogenic temporomandibular disorders: a systematic review and meta-analysis of randomized controlled trials. J Prosthodont Res. 2024;68:12–9. https://doi.org/10.2186/jpr.JPR_D_22_00264.
Zhou Y, Al-Naggar IMA, Chen PJ, Gasek NS, Wang K, Mehta S, Kuchel GA, Yadav S, Xu M. Senolytics alleviate the degenerative disorders of temporomandibular joint in old age. Aging Cell. 2021;20:e13394. https://doi.org/10.1111/acel.13394.
Article PubMed PubMed Central CAS Google Scholar
Pereira FJ Jr, Lundh H, Westesson PL. Morphologic changes in the temporomandibular joint in different age groups. An autopsy investigation. Oral Surg Oral Med Oral Pathol. 1994;78:279–87.
Chen PJ, Dutra EH, Mehta S, O’Brien MH, Yadav S. Age-related changes in the cartilage of the temporomandibular joint. Geroscience. 2020;42:995–1004. https://doi.org/10.1007/s11357-020-00160-w.
Article PubMed PubMed Central CAS Google Scholar
Delpachitra SN, Dimitroulis G. Osteoarthritis of the temporomandibular joint: a review of aetiology and pathogenesis. Br J Oral Maxillofac Surg. 2022;60:387–96. https://doi.org/10.1016/j.bjoms.2021.06.017.
Article PubMed CAS Google Scholar
Ootake T, Ishii T, Sueishi K, Watanabe A, Ishizuka Y, Amano K, Nagao M, Nishimura K, Nishii Y. Effects of mechanical stress and deficiency of dihydrotestosterone or 17β-estradiol on temporomandibular joint osteoarthritis in mice. Osteoarthritis Cartilage. 2021;29:1575–89. https://doi.org/10.1016/j.joca.2021.08.005.
Article PubMed CAS Google Scholar
Sangani D, Suzuki A, VonVille H, Hixson JE, Iwata J. Gene mutations associated with temporomandibular joint disorders: A systematic review. OAlib. 2015;2:e1583. https://doi.org/10.4236/oalib.1101583.
Article PubMed PubMed Central Google Scholar
Lai Y, Zheng W, Qu M, Xiao CC, Chen S, Yao Q, Gong W, Tao C, Yan Q, Zhang P, Wu X, Xiao G. Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice. Int J Oral Sci. 2022;14:33. https://doi.org/10.1038/s41368-022-00185-1.
Article PubMed PubMed Central CAS Google Scholar
Nakao Y, Konno-Nagasaka M, Toriya N, Arakawa T, Kashio H, Takuma T, Mizoguchi I. Proteoglycan expression is influenced by mechanical load in TMJ discs. J Dent Res. 2015;94:93–100. https://doi.org/10.1177/0022034514553816.
Article PubMed CAS Google Scholar
Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001;12:69–78. https://doi.org/10.1006/scdb.2000.0243.
Article PubMed CAS Google Scholar
Livne E. Matrix synthesis in mandibular condylar cartilage of aging mice. Osteoarthr Cartil. 1994;2:187–97. https://doi.org/10.1016/s1063-4584(05)80068-8.
Yang MC, Nakamura M, Kageyama Y, Igari Y, Sasano Y. Age-related gene and protein expression in mouse mandibular condyle analyzed by cap analysis of gene expression and immunohistochemistry. Gerontology. 2023;69:1295–306. https://doi.org/10.1159/000533921.
Article PubMed CAS Google Scholar
Elshawi A, Wakamatsu N, Iinuma M, Nagayama M, Tamura Y. TMJ degenerative changes in SAMP3 mice by occlusal disharmony and aging. J Hard Tissue Biol. 2012;2012(21):399–406. https://doi.org/10.2485/jhtb.21.399.
Ishizuka Y, Shibukawa Y, Nagayama M, Decker R, Kinumatsu T, Saito A, Pacifici M, Koyama E. TMJ degeneration in SAMP8 mice is accompanied by deranged Ihh signaling. J Dent Res. 2014;2014(93):281–7. https://doi.org/10.1177/0022034513519649.
Cardoneanu A, Macovei LA, Burlui AM, Mihai IR, Bratoiu I, Rezus II, Richter P, Tamba BI, Rezus E. Temporomandibular joint osteoarthritis: Pathogenic mechanisms involving the cartilage and subchondral bone, and potential therapeutic strategies for joint regeneration. Int J Mol Sci. 2022;24:171. https://doi.org/10.3390/ijms24010171.
Article PubMed PubMed Central CAS Google Scholar
Shi Y, Hu X, Cheng J, Zhang X, Zhao F, Shi W, Ren B, Yu H, Yang P, Li Z, Duan X, Fu X, Zhang J, Wang J, Ao Y. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun. 2019;10:1914. https://doi.org/10.1038/s41467-019-09839-x.
Article PubMed PubMed Central CAS Google Scholar
Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol. 2021;110:70–88. https://doi.org/10.1016/j.semcdb.2020.07.013.
Article PubMed CAS Google Scholar
Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589–97. https://doi.org/10.1073/pnas.1519458113.
Article PubMed PubMed Central CAS Google Scholar
Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol. 2009;19:R526–35. https://doi.org/10.1016/j.cub.2009.05.025.
Article PubMed PubMed Central CAS Google Scholar
Kaku M, Komatsu Y. Functional diversity of ciliary proteins in bone development and disease. Curr Osteoporos Rep. 2017;15:96–102. https://doi.org/10.1007/s11914-017-0351-6.
Chinipardaz Z, Liu M, Graves DT, Yang S. Role of primary cilia in bone and cartilage. J Dent Res. 2022;101:253–60. https://doi.org/10.1177/00220345211046606.
Article PubMed CAS Google Scholar
Arseni L, Lombardi A, Orioli D. From structure to phenotype: Impact of collagen alterations on human health. Int J Mol Sci. 2018;19:1407. https://doi.org/10.3390/ijms19051407.
Article PubMed PubMed Central CAS Google Scholar
Collins I, Wann AKT. Regulation of the extracellular matrix by ciliary machinery. Cells. 2020;9:278. https://doi.org/10.3390/cells9020278.
Article PubMed CAS Google Scholar
Yuan X, Yang S. Deletion of ift80 impairs epiphyseal and articular cartilage formation due to disruption of chondrocyte differentiation. PLoS ONE. 2015;10:e0130618.
Article PubMed PubMed Central Google Scholar
McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA. Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol. 2007;26:234–46. https://doi.org/10.1016/j.matbio.2006.12.003.
Article PubMed CAS Google Scholar
Kitami M, Yamaguchi H, Ebina M, Kaku M, Chen D, Komatsu Y. IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage. Biochem Biophys Res Commun. 2019;509:222–6. https://doi.org/10.1016/j.bbrc.2018.12.107.
留言 (0)