Bamman MM, Roberts BM, Adams GR. Molecular Regulation of Exercise-Induced muscle Fiber hypertrophy. Cold Spring Harb Perspect Med. 2018;8:a029751. https://www.ncbi.nlm.nih.gov/pubmed/28490543.
Article PubMed PubMed Central Google Scholar
Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=13768451.
Article CAS PubMed PubMed Central Google Scholar
Schiaffino S, Bormioli SP, Aloisi M. The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol. 1976;21:113–8. https://www.ncbi.nlm.nih.gov/pubmed/822576.
Article CAS PubMed Google Scholar
Egner IM, Bruusgaard JC, Gundersen K. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development. 2016;143:2898–906. http://www.ncbi.nlm.nih.gov/pubmed/27531949.
Article CAS PubMed Google Scholar
Goh Q, Millay DP. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. Elife. 2017;6:e20007. http://www.ncbi.nlm.nih.gov/pubmed/28186492.
Article PubMed PubMed Central Google Scholar
Fukada SI, Ito N. Regulation of muscle hypertrophy: involvement of the akt-independent pathway and satellite cells in muscle hypertrophy. Exp Cell Res. 2021;409:112907. https://www.ncbi.nlm.nih.gov/pubmed/34793776.
Article CAS PubMed Google Scholar
Noviello C, Kobon K, Delivry L, Guilbert T, Britto F, Julienne F, Maire P, Randrianarison-Huetz V, Sotiropoulos A. RhoA within myofibers controls satellite cell microenvironment to allow hypertrophic growth. iScience. 2022;25:103616. https://www.ncbi.nlm.nih.gov/pubmed/35106464.
Article CAS PubMed Google Scholar
Guerci A, Lahoute C, Hebrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Precigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A. Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2012;15:25–37. http://www.ncbi.nlm.nih.gov/pubmed/22225874.
Article CAS PubMed Google Scholar
Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7:33–44. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18177723.
Article CAS PubMed Google Scholar
Kaneshige A, Kaji T, Zhang L, Saito H, Nakamura A, Kurosawa T, Ikemoto-Uezumi M, Tsujikawa K, Seno S, Hori M, Saito Y, Matozaki T, Maehara K, Ohkawa Y, Potente M, Watanabe S, Braun T, Uezumi A, Fukada SI. Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load, Cell Stem Cell 29 (2022) 265–280 e266. https://www.ncbi.nlm.nih.gov/pubmed/34856120
Zhang L, Saito H, Higashimoto T, Kaji T, Nakamura A, Iwamori K, Nagano R, Motooka D, Okuzaki D, Uezumi A, Seno S, Fukada SI. Regulation of muscle hypertrophy through granulin: relayed communication among mesenchymal progenitors, macrophages, and satellite cells. Cell Rep. 2024;43:114052. https://www.ncbi.nlm.nih.gov/pubmed/38573860.
Article CAS PubMed Google Scholar
Fukuda S, Kaneshige A, Kaji T, Noguchi YT, Takemoto Y, Zhang L, Tsujikawa K, Kokubo H, Uezumi A, Maehara K, Harada A, Ohkawa Y, Fukada SI. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. Elife. 2019;8:e48284. http://www.ncbi.nlm.nih.gov/pubmed/31545169.
Article CAS PubMed PubMed Central Google Scholar
Fischer A, Gessler M. Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors, Nucleic Acids Res 35 (2007) 4583–4596. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17586813
Fukada S, Yamaguchi M, Kokubo H, Ogawa R, Uezumi A, Yoneda T, Matev MM, Motohashi N, Ito T, Zolkiewska A, Johnson RL, Saga Y, Miyagoe-Suzuki Y, Tsujikawa K, Takeda S. Yamamoto, Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development. 2011;138:4609–19. http://www.ncbi.nlm.nih.gov/pubmed/21989910.
Article CAS PubMed PubMed Central Google Scholar
Noguchi YT, Nakamura M, Hino N, Nogami J, Tsuji S, Sato T, Zhang L, Tsujikawa K, Tanaka T, Izawa K, Okada Y, Doi T, Kokubo H, Harada A, Uezumi A, Gessler M, Ohkawa Y, Fukada SI. Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development. 2019;146:dev163618. http://www.ncbi.nlm.nih.gov/pubmed/30745427.
Article CAS PubMed Google Scholar
Lahmann I, Brohl D, Zyrianova T, Isomura A, Czajkowski MT, Kapoor V, Griger J, Ruffault PL, Mademtzoglou D, Zammit PS, Wunderlich T, Spuler S, Kuhn R, Preibisch S, Wolf J, Kageyama R, Birchmeier C. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes Dev. 2019;33:524–35. http://www.ncbi.nlm.nih.gov/pubmed/30862660.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Lahmann I, Baum K, Shimojo H, Mourikis P, Wolf J, Kageyama R, Birchmeier C. Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells. Nat Commun. 2021;12:1318. https://www.ncbi.nlm.nih.gov/pubmed/33637744.
Article CAS PubMed PubMed Central Google Scholar
Gioftsidi S, Relaix F, Mourikis P. The notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle. 2022;12:9. https://www.ncbi.nlm.nih.gov/pubmed/35459219.
Article CAS PubMed PubMed Central Google Scholar
Ato S, Fukada SI, Kokubo H, Ogasawara R. Implication of satellite cell behaviors in capillary growth via VEGF expression-independent mechanism in response to mechanical loading in HeyL-null mice. Am J Physiol Cell Physiol 322 (2022). https://www.ncbi.nlm.nih.gov/pubmed/35020502
Masschelein E, D’Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, von Meyenn F, Bar-Nur O, De Bock K. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle. 2020;10:21. https://www.ncbi.nlm.nih.gov/pubmed/32646489.
Article CAS PubMed PubMed Central Google Scholar
D’Hulst G, Palmer AS, Masschelein E, Bar-Nur O, De Bock K. Voluntary Resistance running as a model to induce mTOR activation in mouse skeletal muscle. Front Physiol. 2019;10:1271. https://www.ncbi.nlm.nih.gov/pubmed/31636571.
Article PubMed PubMed Central Google Scholar
Ikemoto-Uezumi M, Uezumi A, Tsuchida K, Fukada S, Yamamoto H, Yamamoto N, Shiomi K, Hashimoto N. Pro-insulin-like Growth Factor-II ameliorates Age-Related Inefficient Regenerative response by orchestrating self-reinforcement mechanism of muscle regeneration. Stem Cells. 2015;33:2456–68. http://www.ncbi.nlm.nih.gov/pubmed/25917344.
Article CAS PubMed Google Scholar
Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. Vitro Cell Dev Biol Anim. 1995;31:773–9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8564066.
Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells. 2007;25:2448–59. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17600112.
Article CAS PubMed Google Scholar
Yamaguchi M, Murakami S, Yoneda T, Nakamura M, Zhang L, Uezumi A, Fukuda S, Kokubo H, Tsujikawa K, Fukada S. Evidence of Notch-Hesr-Nrf2 Axis in muscle stem cells, but absence of Nrf2 has no effect on their quiescent and undifferentiated state. PLoS ONE. 2015;10:e0138517. http://www.ncbi.nlm.nih.gov/pubmed/26418810.
Article PubMed PubMed Central Google Scholar
Fukada SI, Nakamura A. Exercise/Resistance training and muscle stem cells. Endocrinol Metab (Seoul). 2021;36:737–44. https://www.ncbi.nlm.nih.gov/pubmed/34372625.
Article CAS PubMed Google Scholar
Jackson JR, Kirby TJ, Fry CS, Cooper RL, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Reduced voluntary running performance is associated with impaired coordination as a result of muscle satellite cell depletion in adult mice. Skelet Muscle. 2015;5:41. https://www.ncbi.nlm.nih.gov/pubmed/26579218.
留言 (0)