Decreased number of satellite cells-derived myonuclei in both fast- and slow-twitch muscles in HeyL-KO mice during voluntary running exercise

Bamman MM, Roberts BM, Adams GR. Molecular Regulation of Exercise-Induced muscle Fiber hypertrophy. Cold Spring Harb Perspect Med. 2018;8:a029751. https://www.ncbi.nlm.nih.gov/pubmed/28490543.

Article  PubMed  PubMed Central  Google Scholar 

Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=13768451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiaffino S, Bormioli SP, Aloisi M. The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol. 1976;21:113–8. https://www.ncbi.nlm.nih.gov/pubmed/822576.

Article  CAS  PubMed  Google Scholar 

Egner IM, Bruusgaard JC, Gundersen K. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development. 2016;143:2898–906. http://www.ncbi.nlm.nih.gov/pubmed/27531949.

Article  CAS  PubMed  Google Scholar 

Goh Q, Millay DP. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. Elife. 2017;6:e20007. http://www.ncbi.nlm.nih.gov/pubmed/28186492.

Article  PubMed  PubMed Central  Google Scholar 

Fukada SI, Ito N. Regulation of muscle hypertrophy: involvement of the akt-independent pathway and satellite cells in muscle hypertrophy. Exp Cell Res. 2021;409:112907. https://www.ncbi.nlm.nih.gov/pubmed/34793776.

Article  CAS  PubMed  Google Scholar 

Noviello C, Kobon K, Delivry L, Guilbert T, Britto F, Julienne F, Maire P, Randrianarison-Huetz V, Sotiropoulos A. RhoA within myofibers controls satellite cell microenvironment to allow hypertrophic growth. iScience. 2022;25:103616. https://www.ncbi.nlm.nih.gov/pubmed/35106464.

Article  CAS  PubMed  Google Scholar 

Guerci A, Lahoute C, Hebrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Precigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A. Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2012;15:25–37. http://www.ncbi.nlm.nih.gov/pubmed/22225874.

Article  CAS  PubMed  Google Scholar 

Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7:33–44. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18177723.

Article  CAS  PubMed  Google Scholar 

Kaneshige A, Kaji T, Zhang L, Saito H, Nakamura A, Kurosawa T, Ikemoto-Uezumi M, Tsujikawa K, Seno S, Hori M, Saito Y, Matozaki T, Maehara K, Ohkawa Y, Potente M, Watanabe S, Braun T, Uezumi A, Fukada SI. Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load, Cell Stem Cell 29 (2022) 265–280 e266. https://www.ncbi.nlm.nih.gov/pubmed/34856120

Zhang L, Saito H, Higashimoto T, Kaji T, Nakamura A, Iwamori K, Nagano R, Motooka D, Okuzaki D, Uezumi A, Seno S, Fukada SI. Regulation of muscle hypertrophy through granulin: relayed communication among mesenchymal progenitors, macrophages, and satellite cells. Cell Rep. 2024;43:114052. https://www.ncbi.nlm.nih.gov/pubmed/38573860.

Article  CAS  PubMed  Google Scholar 

Fukuda S, Kaneshige A, Kaji T, Noguchi YT, Takemoto Y, Zhang L, Tsujikawa K, Kokubo H, Uezumi A, Maehara K, Harada A, Ohkawa Y, Fukada SI. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. Elife. 2019;8:e48284. http://www.ncbi.nlm.nih.gov/pubmed/31545169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer A, Gessler M. Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors, Nucleic Acids Res 35 (2007) 4583–4596. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17586813

Fukada S, Yamaguchi M, Kokubo H, Ogawa R, Uezumi A, Yoneda T, Matev MM, Motohashi N, Ito T, Zolkiewska A, Johnson RL, Saga Y, Miyagoe-Suzuki Y, Tsujikawa K, Takeda S. Yamamoto, Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development. 2011;138:4609–19. http://www.ncbi.nlm.nih.gov/pubmed/21989910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noguchi YT, Nakamura M, Hino N, Nogami J, Tsuji S, Sato T, Zhang L, Tsujikawa K, Tanaka T, Izawa K, Okada Y, Doi T, Kokubo H, Harada A, Uezumi A, Gessler M, Ohkawa Y, Fukada SI. Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development. 2019;146:dev163618. http://www.ncbi.nlm.nih.gov/pubmed/30745427.

Article  CAS  PubMed  Google Scholar 

Lahmann I, Brohl D, Zyrianova T, Isomura A, Czajkowski MT, Kapoor V, Griger J, Ruffault PL, Mademtzoglou D, Zammit PS, Wunderlich T, Spuler S, Kuhn R, Preibisch S, Wolf J, Kageyama R, Birchmeier C. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes Dev. 2019;33:524–35. http://www.ncbi.nlm.nih.gov/pubmed/30862660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Lahmann I, Baum K, Shimojo H, Mourikis P, Wolf J, Kageyama R, Birchmeier C. Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells. Nat Commun. 2021;12:1318. https://www.ncbi.nlm.nih.gov/pubmed/33637744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gioftsidi S, Relaix F, Mourikis P. The notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle. 2022;12:9. https://www.ncbi.nlm.nih.gov/pubmed/35459219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ato S, Fukada SI, Kokubo H, Ogasawara R. Implication of satellite cell behaviors in capillary growth via VEGF expression-independent mechanism in response to mechanical loading in HeyL-null mice. Am J Physiol Cell Physiol 322 (2022). https://www.ncbi.nlm.nih.gov/pubmed/35020502

Masschelein E, D’Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, von Meyenn F, Bar-Nur O, De Bock K. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle. 2020;10:21. https://www.ncbi.nlm.nih.gov/pubmed/32646489.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Hulst G, Palmer AS, Masschelein E, Bar-Nur O, De Bock K. Voluntary Resistance running as a model to induce mTOR activation in mouse skeletal muscle. Front Physiol. 2019;10:1271. https://www.ncbi.nlm.nih.gov/pubmed/31636571.

Article  PubMed  PubMed Central  Google Scholar 

Ikemoto-Uezumi M, Uezumi A, Tsuchida K, Fukada S, Yamamoto H, Yamamoto N, Shiomi K, Hashimoto N. Pro-insulin-like Growth Factor-II ameliorates Age-Related Inefficient Regenerative response by orchestrating self-reinforcement mechanism of muscle regeneration. Stem Cells. 2015;33:2456–68. http://www.ncbi.nlm.nih.gov/pubmed/25917344.

Article  CAS  PubMed  Google Scholar 

Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. Vitro Cell Dev Biol Anim. 1995;31:773–9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8564066.

Article  CAS  Google Scholar 

Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells. 2007;25:2448–59. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17600112.

Article  CAS  PubMed  Google Scholar 

Yamaguchi M, Murakami S, Yoneda T, Nakamura M, Zhang L, Uezumi A, Fukuda S, Kokubo H, Tsujikawa K, Fukada S. Evidence of Notch-Hesr-Nrf2 Axis in muscle stem cells, but absence of Nrf2 has no effect on their quiescent and undifferentiated state. PLoS ONE. 2015;10:e0138517. http://www.ncbi.nlm.nih.gov/pubmed/26418810.

Article  PubMed  PubMed Central  Google Scholar 

Fukada SI, Nakamura A. Exercise/Resistance training and muscle stem cells. Endocrinol Metab (Seoul). 2021;36:737–44. https://www.ncbi.nlm.nih.gov/pubmed/34372625.

Article  CAS  PubMed  Google Scholar 

Jackson JR, Kirby TJ, Fry CS, Cooper RL, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Reduced voluntary running performance is associated with impaired coordination as a result of muscle satellite cell depletion in adult mice. Skelet Muscle. 2015;5:41. https://www.ncbi.nlm.nih.gov/pubmed/26579218.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif