Muscle degeneration in aging Drosophila flies: the role of mechanical stress

Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5.

Article  PubMed  Google Scholar 

Beaudart C, Reginster JY, Petermans J, Gillain S, Quabron A, Locquet M, et al. Quality of life and physical components linked to sarcopenia: the SarcoPhAge study. Exp Gerontol. 2015;69:103–10.

Article  PubMed  CAS  Google Scholar 

Arango-Lopera VE, Arroyo P, Gutierrez-Robledo LM, Perez-Zepeda MU, Cesari M. Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging. 2013;17(3):259–62.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89(1):81–8.

Article  PubMed  CAS  Google Scholar 

Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature. 2002;419(6909):808–14.

Article  PubMed  CAS  Google Scholar 

Sheard PW, Anderson RD. Age-related loss of muscle fibres is highly variable amongst mouse skeletal muscles. Biogerontology. 2012;13(2):157–67.

Article  PubMed  CAS  Google Scholar 

Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, et al. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Exp Gerontol. 2002;37(8–9):1055–68.

Article  PubMed  Google Scholar 

Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–46.

Article  PubMed  Google Scholar 

Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017;16:21.

Article  PubMed  PubMed Central  Google Scholar 

Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thepenier C, et al. Comparative study of injury models for studying muscle regeneration in mice. PLoS One. 2016;11(1):e0147198.

Article  PubMed  PubMed Central  Google Scholar 

Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21(8):854–62.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des. 2010;16(8):906–14.

Article  PubMed  CAS  Google Scholar 

Lexell J, Henriksson-Larsen K, Winblad B, Sjostrom M. Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve. 1983;6(8):588–95.

Article  PubMed  CAS  Google Scholar 

Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2–3):275–94.

Article  PubMed  CAS  Google Scholar 

Peckham M, Molloy JE, Sparrow JC, White DC. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil. 1990;11(3):203–15.

Article  PubMed  CAS  Google Scholar 

Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531.

Article  PubMed  CAS  Google Scholar 

Deak II. A histochemical study of the muscles of Drosophila melanogaster. J Morphol. 1977;153(2):307–16.

Article  PubMed  CAS  Google Scholar 

Oas ST, Bryantsev AL, Cripps RM. Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila. J Cell Biol. 2014;206(7):895–908.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Augustin H, Partridge L. Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta. 2009;1790(10):1084–94.

Article  PubMed  CAS  Google Scholar 

Gartner LP. Aging and the visceral musculature of the adult fruitfly: an ultrastructural investigation. Trans Am Microsc Soc. 1977;96(1):48–55.

Article  PubMed  CAS  Google Scholar 

Takahashi A, Philpott DE, Miquel J. Electron microscope studies on aging Drosophila melanogaster. 3. Flight muscle. J Gerontol. 1970;25(3):222–8.

Article  PubMed  CAS  Google Scholar 

Webb S, Tribe MA. Are there major degenerative changes in the flight muscle of ageing diptera? Exp Gerontol. 1974;9(1):43–9.

Article  PubMed  CAS  Google Scholar 

Horne M, Krebushevski K, Wells A, Tunio N, Jarvis C, Francisco G, et al. Julius seizure, a drosophila mutant, defines a neuronal population underlying epileptogenesis. Genetics. 2017;205(3):1261–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bryantsev AL, Baker PW, Lovato TL, Jaramillo MS, Cripps RM. Differential requirements for myocyte enhancer factor-2 during adult myogenesis in Drosophila. Dev Biol. 2012;361(2):191–207.

Article  PubMed  CAS  Google Scholar 

Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 1995;5(6):635–42.

Article  PubMed  CAS  Google Scholar 

Drummond DR, Hennessey ES, Sparrow JC. Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet. 1991;226(1–2):70–80.

Article  PubMed  CAS  Google Scholar 

Miller MS, Lekkas P, Braddock JM, Farman GP, Ballif BA, Irving TC, et al. Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J. 2008;95(5):2391–401.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bryantsev AL, Castillo L, Oas ST, Chechenova MB, Dohn TE, Lovato TL. Myogenesis in Drosophila melanogaster: dissection of distinct muscle types for molecular analysis. New York: Myogenesis: Springer; 2019. p. 267–81.

Pearse AGE. Histochemistry, theoretical and applied. 3rd ed. Baltimore: Williams and Wilkins Co.; 1972.

Google Scholar 

Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nat Methods. 2014;11(2):121–2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Al-Qusairi L, Laporte J. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle. 2011;1(1):26.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Razzaq A, Robinson IM, McMahon HT, Skepper JN, Su Y, Zelhof AC, et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 2001;15(22):2967–79.

留言 (0)

沒有登入
gif