Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267. https://doi.org/10.1093/jee/18.2.265a
Abd Rani NZ, Husain K, Kumolosasi E (2018) Moringa genus: a review of phytochemistry and pharmacology. Front Pharmacol 9:108. https://doi.org/10.3389/fphar.2018.00108
Article CAS PubMed PubMed Central Google Scholar
Adeyemi S, Larayetan R, Onoja A et al (2021) Anti-hemorrhagic activity of ethanol extract of Moringaoleifera leaf on envenomed albino rats. Sci Afr 12:e00742. https://doi.org/10.1016/j.sciaf.2021.e00742
Ahissou BR, Sawadogo WM, Bokonon-Ganta A et al (2021) Baseline toxicity data of different insecticides against the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) and control failure likelihood estimation in Burkina Faso. Afr Entomol 29:435–444. https://doi.org/10.4001/003.029.0435
Al-Azawi MT, Hadi S, Mohammed CH (2019) Synthesis of silica nanoparticles via green approach by using hot aqueous extract of Thuja orientalis leaf and their effect on biofilm formation. Iraqi J Agric Sci 50:245–255. https://doi.org/10.36103/ijas.v50ispecial.196
Allafchian A, Mirahmadi-Zare S, Jalali S et al (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem 6:129–135. https://doi.org/10.1007/s40097-016-0187-0
Amein N, Abdelal A, Said E (2023) Effectiveness of teflubenzuron, emamectin benzoate, and alfa-cypermethrin on fall armyworm, Spodopterafrugiperda (JE Smith) (Noctuidae: Lepidoptera), under Laboratory and Field Conditions. Egypt Acad J Biol Sci A Entomol 16:133–139. https://doi.org/10.21608/eajbsa.2023.290568
Attia RG, Khalil MM, Hussein MA et al (2023) Cinnamon oil encapsulated with silica nanoparticles: chemical characterization and evaluation of insecticidal activity against the rice moth, Corcyra cephalonica. Neotropical Entomol 52:500–511. https://doi.org/10.1007/s13744-023-01037-1
Awwad AM, Salem NM (2012) Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechnol 2:125–128. https://doi.org/10.5923/j.nn.20120204.06
Babu RH, Yugandhar P, Savithramma N (2018) Synthesis, characterization and antimicrobial studies of bio silica nanoparticles prepared from Cynodondactylon L.: a green approach. Bull Mater Sci 41:1–8. https://doi.org/10.1007/s12034-018-1584-4
Bagheri G, Martorell M, Ramírez-Alarcón K et al (2020) Phytochemical screening of Moringa oleifera leaf extracts and their antimicrobial activities. Cell Mol Biol 66:20–26. https://doi.org/10.14715/cmb/2019.66.1.3
Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083. https://doi.org/10.1007/s00436-012-2934-6
Baz MM, El-Barkey NM, Kamel AS et al (2022) Efficacy of porous silica nanostructure as an insecticide against filarial vector Culex pipiens (Diptera: Culicidae). Int J Trop Insect Sci 42:2113–2125. https://doi.org/10.1007/s42690-022-00732-7
Bilal M, Xu C, Cao L et al (2020) Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutellaxylostella L. with decreased detoxification enzymes activities. Pest Manag Sci 76:3749–3758. https://doi.org/10.1002/ps.5924
Article CAS PubMed Google Scholar
Bonni G, Houndete TA, Sekloka E, Balle RA, Kpindou OD (2020) Field and laboratory testing of new insecticides molecules against Spodoptera frugiperda (JE Smith, 1797) infesting maize in Benin. Biol Sci Pharm Res 4:65–71. https://doi.org/10.15739/ibspr.20.008
Dahi HF, Salem SA, Gamil WE et al (2020) Heat requirements for the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) as a new invasive pest in Egypt. Egypt Acad J Biol Sci A Entomol 13:73–85. https://doi.org/10.21608/eajbsa.2020.120603
Day R, Abrahams P, Bateman M et al (2017) Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag 28:196–201
Debnath N, Das S, Seth D et al (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105. https://doi.org/10.1007/s10340-010-0332-3
Debnath N, Mitra S, Das S et al (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256. https://doi.org/10.1016/j.powtec.2012.01.009
Deshmukh S, Pavithra H, Kalleshwaraswamy C et al (2020) Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) on maize in India. Florida Entomol 103:221–227. https://doi.org/10.1653/024.103.0211
Dileep Kumar N, Murali Mohan K (2022) Variations in the susceptibility of Indian populations of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) to selected insecticides. Int J Trop Insect Sci 42:1707–1712. https://doi.org/10.1007/s42690-021-00693-3
Djangang C, Mlowe S, Njopwouo D et al (2015) One-step synthesis of silica nanoparticles by thermolysis of rice husk ash using non toxic chemicals ethanol and polyethylene glycol. J Appl Chem 4:1218–1226
Elia P, Zach R, Hazan S et al (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomed 9:4007. https://doi.org/10.2147/IJN.S57343
El-Naggar ME, Abdelsalam NR, Fouda MM et al (2020) Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10:739. https://doi.org/10.3390/nano10040739
Article CAS PubMed PubMed Central Google Scholar
El-Seedi HR, El-Shabasy RM, Khalifa SA et al (2019) Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 9:24539–24559. https://doi.org/10.1039/c9ra02225b
Article CAS PubMed PubMed Central Google Scholar
Fakhari S, Jamzad M, KabiriFard H (2019) Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev 12:19–24. https://doi.org/10.1080/17518253.2018.1547925
Fan T, Meng Z, Chen X et al (2023) Fabrication of stimuli-responsive nanoparticles for high-efficiency chlorantraniliprole delivery and smart control of Spodopterafrugiperda. Ind Crops Prod 205:117427. https://doi.org/10.1016/j.indcrop.2023.117427
Feng J, Chen W, Shen Y et al (2020) Fabrication of abamectin-loaded mesoporous silica nanoparticles by emulsion-solvent evaporation to improve photolysis stability and extend insecticidal activity. Nanotechnology 31:345705. https://doi.org/10.1088/1361-6528/ab91f0
Article CAS PubMed Google Scholar
Feng J, Yang J, Shen Y et al (2021) Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: properties and applications. Microporous Mesoporous Mater 311:110688. https://doi.org/10.1016/j.micromeso.2020.110688
Goergen G, Kumar PL, Sankung SB et al (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS one 11:e0165632. https://doi.org/10.1371/journal.pone.0165632
Article CAS PubMed PubMed Central Google Scholar
Harborne A (1998) Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media, Berlin
Idrees A, Afzal A, Chohan TA et al (2023) Laboratory evaluation of selected botanicals and insecticides against invasive Spodoptera frugiperda (Lepidoptera: Noctuidae). J King Saud Univ-Sci 35:102811
Iravani S, Korbekandi H, Mirmohammadi SV et al (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406
CAS PubMed PubMed Central Google Scholar
Jadhav V, Bhagare A, Ali IH et al (2022) Role of Moringaoleifera on green synthesis of metal/metal oxide nanomaterials. J Nanomater 2022:1–10. https://doi.org/10.1155/2022/2147393
留言 (0)