Genome-wide CRISPR screen identifies MAD2L1BP and ANAPC15 as targets for brentuximab vedotin sensitivity in CD30+ peripheral T-cell lymphoma

Horwitz S, O’Connor OA, Pro B, Trumper L, Iyer S, Advani R, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol. 2022;33:288–98.

Article  PubMed  CAS  Google Scholar 

Horwitz SM, Advani RH, Bartlett NL, Jacobsen ED, Sharman JP, O’Connor OA, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014;123:3095–100.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30:2190–6.

Article  PubMed  CAS  Google Scholar 

Chen R, Hou J, Newman E, Kim Y, Donohue C, Liu X, et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther. 2015;14:1376–84.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chiba M, Shimono J, Ishio T, Takei N, Kasahara K, Ogasawara R, et al. Genome-wide CRISPR screens identify CD48 defining susceptibility to NK cytotoxicity in peripheral T-cell lymphomas. Blood. 2022;140:1951–63.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ishio T, Kumar S, Shimono J, Daenthanasanmak A, Dubois S, Lin Y, et al. Genome-wide CRISPR screen identifies CDK6 as a therapeutic target in adult T-cell leukemia/lymphoma. Blood. 2022;139:1541–56.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nakagawa M, Shaffer AL 3rd, Ceribelli M, Zhang M, Wright G, Huang DW, et al. Targeting the HTLV-I-regulated BATF3/IRF4 transcriptional network in adult T cell leukemia/lymphoma. Cancer Cell. 2018;34:286–97.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fauster A, Rebsamen M, Willmann KL, Cesar-Razquin A, Girardi E, Bigenzahn JW, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138–55.

Article  PubMed  CAS  Google Scholar 

Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10:457–70.

Article  PubMed  CAS  Google Scholar 

Nawrocki JF, Kirsten ES, Fisher RI. Biochemical and structural properties of a Hodgkin’s disease-related membrane protein. J Immunol. 1988;141:672–80.

Article  PubMed  CAS  Google Scholar 

McAinsh AD, Kops G. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol. 2023;24:543–59.

Article  PubMed  CAS  Google Scholar 

Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh DC, et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell. 2010;18:382–95.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lok TM, Wang Y, Xu WK, Xie S, Ma HT, Poon RYC. Mitotic slippage is determined by p31(comet) and the weakening of the spindle-assembly checkpoint. Oncogene. 2020;39:2819–34.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mansfeld J, Collin P, Collins MO, Choudhary JS, Pines J. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol. 2011;13:1234–43.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma HT, Chan YY, Chen X, On KF, Poon RY. Depletion of p31comet protein promotes sensitivity to antimitotic drugs. J Biol Chem. 2012;287:21561–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif