Repetitive peripheral magnetic stimulation alone or in combination with repetitive transcranial magnetic stimulation in poststroke rehabilitation: a systematic review and meta-analysis

Struppler A. Müller-Barna. New method for early rehabilitation in extremities palsies of central origin by magnetic stimulation. Klinische Neurophysiologie. 1996;27 3:151–7. https://doi.org/10.1055/s-2008-1060205.

Article  Google Scholar 

Beaulieu LD, Schneider C. Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Neurophysiol Clin. 2013;43 4:251–60. https://doi.org/10.1016/j.neucli.2013.05.003.

Article  Google Scholar 

Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126 6:1071–107. https://doi.org/10.1016/j.clinph.2015.02.001.

Article  Google Scholar 

Heller S, Bieringer S, Krewer C, Koenig E, Müller F. The effects of repetitive peripheral magnetic stimulation on spasticity and motor function in patients with spastic hemiparesis as add-on in neuro-rehabilitation. Klinische Neurophysiologie. 2010;41(1). https://doi.org/10.1055/s-0030-1251006.

Struppler A, Havel P, Müller-Barna P. Facilitation of skilled finger movements by repetitive peripheral magnetic stimulation (RPMS) - a new approach in central paresis. NeuroRehabilitation (Reading Mass). 2003;18 1:69–82. https://doi.org/10.3233/nre-2003-18108.

Article  Google Scholar 

Struppler A, Angerer B, GÜNdisch C, Havel P. Modulatory effect of repetitive peripheral magnetic stimulation on skeletal muscle tone in healthy subjects: stabilization of the elbow joint. Exp Brain Res. 2004;157 1:59–66. https://doi.org/10.1007/s00221-003-1817-6.

Article  Google Scholar 

Heldmann B, Kerkhoff G, Struppler A, Havel P, Jahn T. Repetitive peripheral magnetic stimulation alleviates tactile extinction. NeuroReport. 2000;11 14:3193–8. https://doi.org/10.1097/00001756-200009280-00029.

Article  Google Scholar 

Momosaki R, Yamada N, Ota E, Abo M. Repetitive peripheral magnetic stimulation for activities of daily living and functional ability in people after stroke. Cochrane Database Syst Rev. 2017;6 6(Cd011968). https://doi.org/10.1002/14651858.CD011968.pub2.

Lindenberg R, Zhu LL, Schlaug G. Combined Central and Peripheral Stimulation to Facilitate Motor Recovery after Stroke: the Effect of Number of Sessions on Outcome. Neurorehabilit Neural Repair. 2012;26 5:479–83. https://doi.org/10.1177/1545968311427568.

Article  Google Scholar 

MagVenture announces FDA clearance. of Pain Therapy in the US: A non-invasive approach to chronic pain relief.

Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. 2022.

Qin Y, Liu X, Zhang Y, Wu J, Wang X. Effects of transcranial combined with peripheral repetitive magnetic stimulation on limb spasticity and resting-state brain activity in stroke patients. Front Hum Neurosci. 2023;17:992424. https://doi.org/10.3389/fnhum.2023.992424.

Article  PubMed  PubMed Central  Google Scholar 

Chen Z-J, Li Y-A, Xia N, Gu M-H, Xu J, Huang X-L. Effects of repetitive peripheral magnetic stimulation for the upper limb after stroke: Meta-analysis of randomized controlled trials. Heliyon. 2023;9 5:e15767. https://doi.org/10.1016/j.heliyon.2023.e15767.

Article  Google Scholar 

Pan J-X, Jia Y-B, Liu H. Application of repetitive peripheral magnetic stimulation for recovery of motor function after stroke based on neuromodulation: a narrative review. Brain Netw Modulation. 2022;1(1):13–9. https://doi.org/10.4103/2773-2398.340140.

Article  Google Scholar 

Kamo T, Wada Y, Okamura M, Sakai K, Momosaki R, Taito S. Repetitive peripheral magnetic stimulation for impairment and disability in people after stroke. Cochrane Database Syst Rev. 2022;9 9(Cd011968). https://doi.org/10.1002/14651858.CD011968.pub4.

Sakai K, Yasufuku Y, Kamo T, Ota E, Momosaki R. Repetitive peripheral magnetic stimulation for impairment and disability in people after stroke. Cochrane Database Syst Rev. 2019;11 11:Cd011968. https://doi.org/10.1002/14651858.CD011968.pub3.

Article  Google Scholar 

Pan JX, Diao YX, Peng HY, Wang XZ, Liao LR, Wang MY, et al. Effects of repetitive peripheral magnetic stimulation on spasticity evaluated with modified Ashworth scale/Ashworth scale in patients with spastic paralysis: a systematic review and meta-analysis. Front Neurol. 2022;13:997913. https://doi.org/10.3389/fneur.2022.997913.

Article  PubMed  PubMed Central  Google Scholar 

Fernanda Silva G, Campos LF, de Aquino Miranda JM, Guirro Zuliani F, de Souza Fonseca BH, de Araújo AET, et al. Repetitive peripheral sensory stimulation for motor recovery after stroke: a scoping review. Top Stroke Rehabil. 2024;1–15. https://doi.org/10.1080/10749357.2024.2322890.

Moher D, Liberati A, Tetzlaff J, Altman DG. Reprint—Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA Statement. Phys Ther. 2009;89 9:873–80. https://doi.org/10.1093/ptj/89.9.873.

Article  Google Scholar 

Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017;12 5:451–61. https://doi.org/10.1177/1747493017711813.

Article  Google Scholar 

Daving Y, Andrén E, Nordholm L, Grimby G. Reliability of an interview approach to the functional independence measure. Clin Rehabil. 2001;15 3:301–10. https://doi.org/10.1191/026921501669986659.

Article  Google Scholar 

Duffy L, Gajree S, Langhorne P, Stott DJ, Quinn TJ. Reliability (inter-rater agreement) of the Barthel Index for Assessment of Stroke Survivors: systematic review and Meta-analysis. Stroke (1970). 2013;44(2):462–8. https://doi.org/10.1161/STROKEAHA.112.678615.

Article  Google Scholar 

Bhogal SK, Teasell RW, Foley NC, Speechley MR. The PEDro scale provides a more comprehensive measure of methodological quality than the Jadad Scale in stroke rehabilitation literature. J Clin Epidemiol. 2005;58 7:668–73. https://doi.org/10.1016/j.jclinepi.2005.01.002.

Article  Google Scholar 

Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27 6:1785–805. https://doi.org/10.1177/0962280216669183.

Article  Google Scholar 

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1:135). https://doi.org/10.1186/1471-2288-14-135.

Turner HM, Bernard RM. Calculating and synthesizing effect sizes. Contemp Issues Communication Sci Disorders. 2006;33 1:42–55.

Article  Google Scholar 

Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21 11:1539–58. https://doi.org/10.1002/sim.1186.

Article  Google Scholar 

McKenzie JE, Herbison GP, Deeks JJ. Impact of analysing continuous outcomes using final values, change scores and analysis of covariance on the performance of meta-analytic methods: a simulation study. Res Synthesis Methods. 2016;7 4:371–86. https://doi.org/10.1002/jrsm.1196.

Article  Google Scholar 

Geissbühler M, Hincapié CA, Aghlmandi S, Zwahlen M, Jüni P, da Costa BR. Most published meta-regression analyses based on aggregate data suffer from methodological pitfalls: a meta-epidemiological study. BMC Med Res Methodol. 2021;21(1:123). https://doi.org/10.1186/s12874-021-01310-0.

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315 7109:629–34. https://doi.org/10.1136/bmj.315.7109.629.

Article  Google Scholar 

Rothstein H, Sutton AJ, Borenstein M. Publication bias in meta-analysis: prevention, assessment and adjustments. Chichester, England: Wiley; 2005.

Book  Google Scholar 

Liang S, Wang W, Yu F, Pan L, Xu D, Hu R, et al. Repetitive peripheral magnetic stimulation combined with transcranial magnetic stimulation in rehabilitation of upper extremity hemiparesis following stroke: a pilot study. J Rehabil Med. 2024;56:jrm19449. https://doi.org/10.2340/jrm.v56.19449.

Article  PubMed  Google Scholar 

Chang CS, Chen CL, Chen RS, Chen HC, Chen CY, Chung CY, et al. Synergistic efficacy of repetitive peripheral magnetic stimulation on central intermittent theta burst stimulation for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. J Neuroeng Rehabil. 2024;21(1:49). https://doi.org/10.1186/s12984-024-01341-w.

Wu X, Wang R, Wu Q, Liao C, Zhang J, Jiao H, et al. The effects of combined high-frequency repetitive transcranial magnetic stimulation and cervical nerve root magnetic stimulation on upper extremity motor recovery following stroke. Front Neurosci. 2023;17:1100464. https://doi.org/10.3389/fnins.2023.1100464.

Article  PubMed  PubMed Central  Google Scholar 

Yang T, Li X, Xia P, Wang X, Lu J, Wang L. Effects of rTMS combined with rPMS on stroke patients with arm paralysis after contralateral seventh cervical nerve transfer: a case-series. Int J Neurosci. 2023;133 9:999–1007. https://doi.org/10.1080/00207454.2022.2032044.

Article  CAS  Google Scholar 

Fawaz S, Izumi SI, Farouk MM, El Dyasty S, Saber HG, Atiah AS, et al. Repetitive peripheral magnetic stimulation for improving upper limb function in post-stroke hemiparesis. Brain Injury. 2023;37:5. https://doi.org/10.1080/02699052.2023.2247822.

Article  Google Scholar 

Ke J, Wei J, Zheng B, Tan T, Zhou W, Zou X, et al. Effect of high-frequency repetitive peripheral magnetic stimulation on Motor Performance in Intracerebral Haemorrhage: a clinical trial. J Stroke Cerebrovasc Dis. 2022;31 7:106446. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106446.

Article  Google Scholar 

Jiang Y-F, Zhang D, Zhang J, Hai H, Zhao Y-Y, Ma Y-W. A randomized controlled trial of Repetitive Peripheral Magnetic Stimulation applied in early Subacute Stroke: effects on severe Upper-limb impairment. Clin Rehabil. 2022;36 5:693–702. https://doi.org/10.1177/02692155211072189.

Article  Google Scholar 

El Nahas N, Kenawy FF, Abd Eldayem EH, Roushdy TM, Helmy SM, Akl AZ, et al. Peripheral magnetic theta burst stimulation to muscles can effectively reduce spasticity: a randomized controlled trial. J Neuroeng Rehabil. 2022;19(1:5). https://doi.org/10.1186/s12984-022-00985-w.

Obayashi S, Takahashi R. Repetitive peripheral magnetic stimulation improves severe upper limb paresis in early acute phase stroke survivors. NeuroRehabilitation. 2020;46 4:569–75. https://doi.org/10.3233/nre-203085.

Article  Google Scholar 

Fujimura K, Kagaya H, Endou C, Ishihara A, Nishigaya K, Muroguchi K, et al. Effects of repetitive peripheral magnetic stimulation on shoulder subluxations caused by stroke: a preliminary study. Neuromodulation. 2020;23 6:847–51. https://doi.org/10.1111/ner.13064.

Article  Google Scholar 

Chen X, Liu X, Cui Y, Xu G, Liu L, Zhang X, et al. Efficacy of functional magnetic stimulation in improving upper extremity function after stroke: a randomized, single-blind, controlled study. J Int Med Res. 2020;48 6:300060520927881. https://doi.org/10.1177/0300060520927881.

Article 

留言 (0)

沒有登入
gif