Fertonani A, Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 2017;23:109–23.
Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med. 2020;50:2465–86.
Article PubMed PubMed Central Google Scholar
Hyde J, Carr H, Kelley N, Seneviratne R, Reed C, Parlatini V, et al. Efficacy of neurostimulation across mental disorders: systematic review and meta-analysis of 208 randomized controlled trials. Mol Psychiatry. 2022;27:2709–19.
Article PubMed PubMed Central Google Scholar
Burton CZ, Garnett EO, Capellari E, Chang SE, Tso IF, Hampstead BM, et al. Combined cognitive training and transcranial direct current stimulation in neuropsychiatric disorders: a systematic review and meta-analysis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:151–61.
Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9:197–208.
Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26:916–25.
Article PubMed PubMed Central CAS Google Scholar
Webler RD, Fox J, McTeague LM, Burton PC, Dowdle L, Short EB, et al. DLPFC stimulation alters working memory related activations and performance: an interleaved TMS-fMRI study. Brain Stimul. 2022;15:823–32.
Nord CL, Halahakoon DC, Limbachya T, Charpentier C, Lally N, Walsh V, et al. Neural predictors of treatment response to brain stimulation and psychological therapy in depression: a double-blind randomized controlled trial. Neuropsychopharmacology. 2019;44:1613–22.
Article PubMed PubMed Central Google Scholar
Li Q, Fu Y, Liu C, Meng Z. Transcranial direct current stimulation of the dorsolateral prefrontal cortex for treatment of neuropsychiatric disorders. Front Behav Neurosci. 2022;16:893955.
Article PubMed PubMed Central Google Scholar
Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49:1195–205.
Ouerchefani R, Ouerchefani N, Allain P, Ben Rejeb MR, Le Gall D. Relationships between executive function, working memory, and decision-making on the Iowa Gambling Task: evidence from ventromedial patients, dorsolateral patients, and normal subjects. J Neuropsychol. 2019;13:432–61.
Sawamura D, Ikoma K, Yoshida K, Inagaki Y, Ogawa K, Sakai S. Active inhibition of task-irrelevant sounds and its neural basis in patients with attention deficits after traumatic brain injury. Brain Inj. 2014;28:1455–60.
Koshino H, Osaka M, Osaka N. Competition and cooperation among brain networks: interactions between the default mode network and working memory network. Jpn Psychol Rev. 2013;56:376–91.
Ekman M, Fiebach CJ, Melzer C, Tittgemeyer M, Derrfuss J. Different roles of direct and indirect frontoparietal pathways for individual working memory capacity. J Neurosci. 2016;36:2894–903.
Article PubMed PubMed Central CAS Google Scholar
Gruber AJ, Dayan P, Gutkin BS, Solla SA. Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci. 2006;20:153–66.
McNab F, Klingberg T. Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci. 2008;11:103–7.
Article PubMed CAS Google Scholar
Medina J, Cason S. No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex. 2017;94:131–41.
Nikolin S, Martin D, Loo CK, Boonstra TW. Transcranial direct current stimulation modulates working memory maintenance processes in healthy individuals. J Cogn Neurosci. 2023;35:468–84.
Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28:14147–55.
Article PubMed PubMed Central CAS Google Scholar
Inukai Y, Saito K, Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, et al. Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Front Hum Neurosci. 2016;10:668.
Article PubMed PubMed Central Google Scholar
Moliadze V, Fritzsche G, Antal A. Comparing the efficacy of excitatory transcranial stimulation methods measuring motor evoked potentials. Neural Plast. 2014;2014:837141.
Article PubMed PubMed Central Google Scholar
Murphy OW, Hoy KE, Wong D, Bailey NW, Fitzgerald PB, Segrave RA. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: behavioural and electrophysiological evidence. Brain Stimul. 2020;13:1370–80.
Article PubMed CAS Google Scholar
van der Groen O, Wenderoth N. Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception. J Neurosci. 2016;36:5289–98.
Article PubMed PubMed Central Google Scholar
Pavan A, Ghin F, Contillo A, Milesi C, Campana G, Mather G. Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): a combined stochastic resonance and equivalent noise approach. Brain Stimul. 2019;12:967–77.
van der Groen O, Potok W, Wenderoth N, Edwards G, Mattingley JB, Edwards D. Using noise for the better: the effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev. 2022;138:104702.
Ho KA, Taylor JL, Loo CK. Comparison of the effects of transcranial random noise stimulation and transcranial direct current stimulation on motor cortical excitability. J ECT. 2015;31:67–72.
Gobbelé R, Waberski TD, Kuelkens S, Sturm W, Curio G, Buchner H. Thalamic and cortical high-frequency (600 hz) somatosensory-evoked potential (SEP) components are modulated by slight arousal changes in awake subjects. Exp Brain Res. 2000;133:506–13.
Laczó B, Antal A, Rothkegel H, Paulus W. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restor Neurol Neurosci. 2014;32:403–10.
Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L, et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol. 2013;23:987–92.
Article PubMed PubMed Central CAS Google Scholar
Harty S, Cohen Kadosh R. Suboptimal engagement of high-level cortical regions predicts random noise-related gains in sustained attention. Psychol Sci. 2019;30:1318–32.
Van Doren J, Langguth B, Schecklmann M. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul. 2014;7:807–12.
Contò F, Edwards G, Tyler S, Parrott D, Grossman E, Battelli L. Attention network modulation via tRNS correlates with attention gain. Elife. 2021;10:e63782.
Article PubMed PubMed Central Google Scholar
Herpich F, Contò F, van Koningsbruggen M, Battelli L. Modulating the excitability of the visual cortex using a stimulation priming paradigm. Neuropsychologia. 2018;119:165–71.
留言 (0)