Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52. https://doi.org/10.1056/NEJMra1406184
Article CAS PubMed Google Scholar
He X, Zhu Y, Lin YC, Li M, Du J, Dong H, et al. PRMT1-mediated FLT3 arginine methylation promotes maintenance of FLT3-ITD(+) acute myeloid leukemia. Blood. 2019;134:548–60. https://doi.org/10.1182/blood.2019001282
Article CAS PubMed PubMed Central Google Scholar
Rubnitz JE, Kaspers GJL. How I treat pediatric acute myeloid leukemia. Blood. 2021;138:1009–18. https://doi.org/10.1182/blood.2021011694
Article CAS PubMed Google Scholar
Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120:1165–74. https://doi.org/10.1182/blood-2012-05-378943
Article CAS PubMed PubMed Central Google Scholar
Mezouar S, Darbousset R, Dignat-George F, Panicot-Dubois L, Dubois C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer. 2015;136:462–75. https://doi.org/10.1002/ijc.28997
Article CAS PubMed Google Scholar
Zhang X, Xu H, Bi X, Hou G, Liu A, Zhao Y, et al. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis. 2021;12:931. https://doi.org/10.1038/s41419-021-04221-6
Article CAS PubMed PubMed Central Google Scholar
Foss B, Bruserud O. Platelet functions and clinical effects in acute myelogenous leukemia. Thromb Haemost. 2008;99:27–37. https://doi.org/10.1160/TH07-04-0240
Article CAS PubMed Google Scholar
Cacic D, Nordgård O, Meyer P, Hervig T. Platelet microparticles decrease daunorubicin-induced DNA damage and modulate intrinsic apoptosis in THP-1 cells. Int J Mol Sci. 2021;22:7264. https://doi.org/10.3390/ijms22147264
Zhang W, Colman RW. Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A. Blood. 2007;110:1475–82. https://doi.org/10.1182/blood-2006-10-052522
Article CAS PubMed PubMed Central Google Scholar
An R, Liu J, He J, Wang F, Zhang Q, Yu Q. PDE3A inhibitor anagrelide activates death signaling pathway genes and synergizes with cell death-inducing cytokines to selectively inhibit cancer cell growth. Am J Cancer Res. 2019;9:1905–21.
CAS PubMed PubMed Central Google Scholar
Colman RW. Platelet cyclic adenosine monophosphate phosphodiesterases: targets for regulating platelet-related thrombosis. Semin Thromb Hemost. 2004;30:451–60. https://doi.org/10.1055/s-2004-833480
Article CAS PubMed Google Scholar
Yan B, Ding Z, Zhang W, Cai G, Han H, Ma Y, et al. Multiple PDE3A modulators act as molecular glues promoting PDE3A-SLFN12 interaction and induce SLFN12 dephosphorylation and cell death. Cell Chem Biol. 2022;29:958–69.e5. https://doi.org/10.1016/j.chembiol.2022.01.006
Article CAS PubMed Google Scholar
Hao N, Shen W, Du R, Jiang S, Zhu J, Chen Y, et al. Phosphodiesterase 3A represents a therapeutic target that drives stem cell-like property and metastasis in breast cancer. Mol Cancer Ther. 2020;19:868–81. https://doi.org/10.1158/1535-7163.MCT-18-1233
Article CAS PubMed Google Scholar
Zhong F, Liu J, Gao C, Chen T, Li B. Downstream regulatory network of MYBL2 mediating its oncogenic role in melanoma. Front Oncol. 2022;12:816070. https://doi.org/10.3389/fonc.2022.816070
Article CAS PubMed PubMed Central Google Scholar
Tian FM, Zhong CY, Wang XN, Meng Y. PDE3A is hypermethylated in cisplatin resistant non-small cell lung cancer cells and is a modulator of chemotherapy response. Eur Rev Med Pharm Sci. 2017;21:2635–41.
Storen EC, Tefferi A. Long-term use of anagrelide in young patients with essential thrombocythemia. Blood. 2001;97:863–6. https://doi.org/10.1182/blood.v97.4.863
Article CAS PubMed Google Scholar
Tomer A. Effects of anagrelide on in vivo megakaryocyte proliferation and maturation in essential thrombocythemia. Blood. 2002;99:1602–9. https://doi.org/10.1182/blood.v99.5.1602
Article CAS PubMed Google Scholar
Pulkka OP, Gebreyohannes YK, Wozniak A, Mpindi JP, Tynninen O, Icay K, et al. Anagrelide for gastrointestinal stromal tumor. Clin Cancer Res. 2019;25:1676–87. https://doi.org/10.1158/1078-0432.CCR-18-0815
Article CAS PubMed Google Scholar
Chen J, Liu N, Huang Y, Wang Y, Sun Y, Wu Q, et al. Structure of PDE3A-SLFN12 complex and structure-based design for a potent apoptosis inducer of tumor cells. Nat Commun. 2021;12:6204. https://doi.org/10.1038/s41467-021-26546-8
Article PubMed PubMed Central Google Scholar
Meanwell NA. Anagrelide: a clinically effective cAMP phosphodiesterase 3A inhibitor with molecular glue properties. ACS Med Chem Lett. 2023;14:350–61. https://doi.org/10.1021/acsmedchemlett.3c00092
Article CAS PubMed PubMed Central Google Scholar
de Waal L, Lewis TA, Rees MG, Tsherniak A, Wu X, Choi PS, et al. Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. Nat Chem Biol. 2016;12:102–8. https://doi.org/10.1038/nchembio.1984
Article CAS PubMed Google Scholar
Garvie CW, Wu X, Papanastasiou M, Lee S, Fuller J, Schnitzler GR, et al. Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12 RNase. Nat Commun. 2021;12:4375. https://doi.org/10.1038/s41467-021-24495-w
Article CAS PubMed PubMed Central Google Scholar
Wu X, Schnitzler GR, Gao GF, Diamond B, Baker AR, Kaplan B, et al. Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12. J Biol Chem. 2020;295:3431–46. https://doi.org/10.1074/jbc.RA119.011191
Article CAS PubMed PubMed Central Google Scholar
Li D, Chen J, Ai Y, Wang Y, Sun Y, Wu Q, et al. Estrogen-related hormones induce apoptosis by stabilizing Schlafen-12 protein turnover. Mol Cell. 2019;75:1103–16.e9. https://doi.org/10.1016/j.molcel.2019.06.040
Article CAS PubMed Google Scholar
Ai Y, He H, Chen P, Yan B, Zhang W, Ding Z, et al. An alkaloid initiates phosphodiesterase 3A-schlafen 12 dependent apoptosis without affecting the phosphodiesterase activity. Nat Commun. 2020;11:3236. https://doi.org/10.1038/s41467-020-17052-4
Article CAS PubMed PubMed Central Google Scholar
Dos Santos C, McDonald T, Ho YW, Liu H, Lin A, Forman SJ, et al. The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents. Blood. 2013;122:1900–13. https://doi.org/10.1182/blood-2012-11-466425
Article CAS PubMed PubMed Central Google Scholar
Liu J, Ren G, Li K, Liu Z, Wang Y, Chen T, et al. The Smad4-MYO18A-PP1A complex regulates β-catenin phosphorylation and pemigatinib resistance by inhibiting PAK1 in cholangiocarcinoma. Cell Death Differ. 2022;29:818–31. https://doi.org/10.1038/s41418-021-00897-7
Article CAS PubMed Google Scholar
Low HB, Wong ZL, Wu B, Kong LR, Png CW, Cho YL, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12:2284. https://doi.org/10.1038/s41467-021-22638-7
留言 (0)