Cursio R, Colosetti P, Gugenheim J (2015) Autophagy and liver ischemia-reperfusion injury. Biomed Res Int 2015:417590. https://doi.org/10.1155/2015/417590
Article PubMed PubMed Central Google Scholar
Gracia-Sancho J, Casillas-Ramirez A, Peralta C (2015) Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin Sci (Lond) 129:345–362. https://doi.org/10.1042/CS20150223
Konishi T, Lentsch AB (2017) Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration. Gene Expr J Liver Res 17:277–287. https://doi.org/10.3727/105221617X15042750874156
Mohamed DZ, Aedes El, Sokar SS, Shebl AM, Abu-Risha SES (2021) Targeting autophagy to modulate hepatic ischemia/reperfusion injury: A comparative study between octreotide and melatonin as autophagy modulators through AMPK/PI3K/AKT/mTOR/ULK1 and Keap1/Nrf2 signaling pathways in rats. Eur J Pharmacol 897:173920. https://doi.org/10.1016/j.ejphar.2021.173920
Bach M, Larance M, James DE, Ramm G (2011) The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J 440:283–291. https://doi.org/10.1042/BJ20101894
Suzuki T, Yoshidome H, Kimura F, Shimizu H, Ohtsuka M, Takeuchi D et al (2011) Hepatocyte apoptosis is enhanced after ischemia/reperfusion in the steatotic liver. J Clin Biochem Nutr 48:142–148. https://doi.org/10.3164/jcbn.10-74
Article PubMed PubMed Central Google Scholar
Wang J, Ahn I, Fischer TD, Byeon J, Dunn WA Jr, Behrns KE et al (2011) Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology 141:2188–2199. https://doi.org/10.1053/j.gastro.2011.08.005
Sun K, Xie X, Liu Y, Han Z, Zhao X, Cai N et al (2013) Autophagy lessens ischemic liver injury by reducing oxidative damage. Cell Biosci 3:1–15. https://doi.org/10.1186/2045-3701-3-26
Yang J, Wang Y, Sui M, Liu F, Fu Z, Wang QX (2015) Tri-iodothyronine preconditioning protects against liver ischemia reperfusion injury through the regulation of autophagy by the MEK/ERK/mTORC1 axis. Biochem Biophys Res Commun 467:704–710. https://doi.org/10.1016/j.bbrc.2015.10.080
Kim J, Nitta T, Mohuczy D, O’Malley KA, Moldawer LL, Dunn WA Jr et al (2008) Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 47:1725–1736. https://doi.org/10.1002/hep.22187
Kong Z, Liu R, Cheng Y (2019) Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 109:2043–2053. https://doi.org/10.1016/j.biopha.2018.11.030
Chen J, Wang Z, Mao Y, Zheng Z, Chen Y, Khor S et al (2017) Liraglutide activates autophagy via GLP-1R to improve functional recovery after spinal cord injury. Oncotarget 8:85949–85968. https://doi.org/10.18632/oncotarget.20791.8:85949
Article PubMed PubMed Central Google Scholar
Yang X, Liu S, Wang C, Fan H, Zou Q, Pu Y et al (2024) Dietary salt promotes cognition impairment through GLP-1R/mTOR/p70S6K signaling pathway. Sci Rep 14:7970. https://doi.org/10.1038/s41598-024-57998-9
Article PubMed PubMed Central Google Scholar
Memmott RM, Dennis PA (2009) Akt-dependent and-independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–664. https://doi.org/10.1016/j.cellsig.2009.01.004
Article PubMed PubMed Central Google Scholar
Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152
Article PubMed PubMed Central Google Scholar
Liu WY, Jiang RS (2013) Advances in the research of AMPK and its subunit genes. Pak J Biol Sci 16:1459–1468. https://doi.org/10.3923/pjbs.2013.1459.1468
Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644. https://doi.org/10.4161/auto.7.6.15123
Wang Y, Zhang H, Pang T, Zuo Z, Ren K (2020) Rapamycin improves renal injury induced by Iodixanol in diabetic rats by deactivating the mTOR/p70S6K signaling pathway. Life Sci 259:118284. https://doi.org/10.1016/j.lfs.2020.118284
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019
Rosenthal PJ (2008) Artesunate for the treatment of severe falciparum malaria. N Engl J Med 358:1829–1836. https://doi.org/10.1056/NEJMct0709050
Callender DM, Hsue G (2011) Artesunate: investigational drug for the treatment of severe falciparum malaria in Hawai ‘i. Hawaii Med J 70:77–79
PubMed PubMed Central Google Scholar
Wang D, Shi J, Lv S, Xu W, Li J, Ge W et al (2015) Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4, MyD88 expression, and NF-κB activation in microglial cells. Inflammation 38:1925–1932. https://doi.org/10.1007/s10753-015-0172-7
Cao T-h, Jin S-g, Fei D-s, Kang K, Jiang L, Z-yuan L et al (2016) Artesunate protects against sepsis-induced lung injury via heme oxygenase-1 modulation. Inflammation 39:651–662. https://doi.org/10.1007/s10753-015-0290-2
Zhao D, Zhang J, Xu G, Wang Q (2017) Artesunate protects LPS-induced acute lung injury by inhibiting TLR4 expression and inducing Nrf2 activation. Inflammation 40:798–805. https://doi.org/10.1007/s10753-017-0524-6
Liu Z, Qu M, Yu L, Song P, Chang Y (2018) Artesunate inhibits renal ischemia-reperfusion-mediated remote lung inflammation through attenuating ROS-induced activation of NLRP3 inflammasome. Inflammation 41:1546–1556. https://doi.org/10.1007/s10753-018-0801-z
Khan AI, Kapoor A, Chen J, Martin L, Rogazzo M, Mercier T et al (2018) The antimalarial drug artesunate attenuates cardiac injury in a rodent model of myocardial infarction. Shock 49:675–681. https://doi.org/10.1097/SHK.0000000000000963
Lu H, Wang B, Cui N, Zhang Y (2018) Artesunate suppresses oxidative and inflammatory processes by activating Nrf2 and ROS-dependent p38 MAPK and protects against cerebral ischemia-reperfusion injury. Mol Med Rep 17:6639–6646. https://doi.org/10.3892/mmr.2018.8666
Ghoneim MES, Abdallah DM, Shebl AM, El-Abhar HS (2020) The interrupted cross-talk of inflammatory and oxidative stress trajectories signifies the effect of artesunate against hepatic ischemia/reperfusion-induced inflammasomopathy. Toxicol Appl Pharmacol 409:115309. https://doi.org/10.1016/j.taap.2020.115309
Shao M, Shen Y, Sun H, Meng D, Huo W, Qi X (2018) Protectiveness of artesunate given prior ischemic cerebral infarction is mediated by increased autophagy. Front Neurol 9:634. https://doi.org/10.3389/fneur.2018.00634
Article PubMed PubMed Central Google Scholar
Sridharan K, Vimal Anand S, Saravanan N, Ilamathi M, Ramesh Babu NG (2018) Study of anti-diabetic activity of artesunate as an agonist to glp-1 by molecular docking and in-vitro analysis. Int J Curr Res 10:66308–66312
Atef Y, El-Fayoumi HM, Abdel-Mottaleb Y, Mahmoud MF (2017) Effect of cardamonin on hepatic ischemia reperfusion induced in rats: Role of nitric oxide. Eur J Pharmacol 815:446–453. https://doi.org/10.1016/j.ejphar.2017.09.037
Verma S, Kumar VL (2016) Attenuation of gastric mucosal damage by artesunate in rat: modulation of oxidative stress and NFκB mediated signaling. Chem Biol Interact 257:46–53. https://doi.org/10.1016/j.cbi.2016.07.027
留言 (0)