The chronobiology of human heart failure: clinical implications and therapeutic opportunities

Tsimakouridze EV, Alibhai FJ, Martino TA (2015) Therapeutic applications of circadian rhythms for the cardiovascular system. Front Pharmacol 6. https://doi.org/10.3389/FPHAR.2015.00077

Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol 25:11–28. https://doi.org/10.1101/SQB.1960.025.01.004

Article  Google Scholar 

Vetter C (2020) Circadian disruption: what do we actually mean? Eur J Neurosci 51:531–550. https://doi.org/10.1111/ejn.14255

Article  Google Scholar 

Bonnemeier H, Wiegand UKH, Brandes A et al (2003) Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol 14:791–799. https://doi.org/10.1046/J.1540-8167.2003.03078.X

Article  Google Scholar 

Viswambharan H, Carvas JM, Antic V et al (2007) Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115:2188–2195. https://doi.org/10.1161/CIRCULATIONAHA.106.653303

Article  Google Scholar 

Crnko S, Printezi MI, Zwetsloot P-PM et al (2023) The circadian clock remains intact, but with dampened hormonal output in heart failure. EBioMedicine 91:104556. https://doi.org/10.1016/j.ebiom.2023.104556

Article  PubMed Central  Google Scholar 

Zhong X, Hilton HJ, Gates GJ et al (2005) Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J Appl Physiol Bethesda Md 1985 98:2024–2032. https://doi.org/10.1152/JAPPLPHYSIOL.00620.2004

Mukamal KJ, Muller JE, Maclure M et al (2000) Increased risk of congestive heart failure among infarctions with nighttime onset. Am Heart J 140:438–442. https://doi.org/10.1067/mhj.2000.108830

Article  Google Scholar 

Martino TA, Tata N, Simpson JA et al (2011) The primary benefits of angiotensin-converting enzyme inhibition on cardiac remodeling occur during sleep time in murine pressure overload hypertrophy. J Am Coll Cardiol 57:2020–2028. https://doi.org/10.1016/J.JACC.2010.11.022

Article  Google Scholar 

Bozkurt B, Coats AJS, Tsutsui H et al (2021) Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 23:352–380. https://doi.org/10.1002/EJHF.2115

Article  Google Scholar 

Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW (2019) Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol 16:437–447. https://doi.org/10.1038/S41569-019-0167-4

Article  Google Scholar 

El Jamal N, Lordan R, Teegarden SL et al (2023) The circadian biology of heart failure. Circ Res 132:223–237. https://doi.org/10.1161/CIRCRESAHA.122.321369

Article  PubMed Central  Google Scholar 

Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19:453–469. https://doi.org/10.1038/S41583-018-0026-Z

Article  Google Scholar 

Kalsbeek A, Bruinstroop E, Yi CX et al (2010) Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci 1212:114–129. https://doi.org/10.1111/J.1749-6632.2010.05800.X

Article  Google Scholar 

Zhang R, Lahens NF, Ballance HI et al (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224. https://doi.org/10.1073/PNAS.1408886111

Article  PubMed Central  Google Scholar 

Solt LA, Kojetin DJ, Burris TP (2011) The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 3:623–638. https://doi.org/10.4155/FMC.11.9

Article  Google Scholar 

Bray MS, Shaw CA, Moore MWS et al (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294:H1036. https://doi.org/10.1152/AJPHEART.01291.2007

Article  Google Scholar 

Stangherlin A, Seinkmane E, O’Neill JS (2021) Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. Curr Opin Syst Biol 28:None. https://doi.org/10.1016/j.coisb.2021.100391

Heyde I, Oster H (2019) Differentiating external zeitgeber impact on peripheral circadian clock resetting. Sci Rep 9:20114. https://doi.org/10.1038/S41598-019-56323-Z

Article  PubMed Central  Google Scholar 

Paula ABR, Resende LT, Jardim IABA et al (2022) The effect of diet on the cardiac circadian clock in mice: a systematic review. Metabolites 12:1273. https://doi.org/10.3390/metabo12121273

Article  PubMed Central  Google Scholar 

Gabriel BM, Zierath JR (2019) Circadian rhythms and exercise - re-setting the clock in metabolic disease. Nat Rev Endocrinol 15:197–206. https://doi.org/10.1038/S41574-018-0150-X

Article  Google Scholar 

Morf J, Schibler U (2013) Body temperature cycles: gatekeepers of circadian clocks. Cell Cycle Georget Tex 12:539–540. https://doi.org/10.4161/cc.23670

Article  Google Scholar 

Durgan DJ, Hotze MA, Tomlin TM et al (2005) The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol 289:H1530. https://doi.org/10.1152/AJPHEART.00406.2005

Article  Google Scholar 

Davidson AJ, London B, Block GD, Menaker M (2005) Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens N Y N 1993 27:307–311. https://doi.org/10.1081/CEH-48933

Martino TA, Oudit GY, Herzenberg AM et al (2008) Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol 294:R1675. https://doi.org/10.1152/AJPREGU.00829.2007

Article  Google Scholar 

Young ME, Brewer RA, Peliciari-Garcia RA et al (2014) Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms 29:257–276. https://doi.org/10.1177/0748730414543141

Article  PubMed Central  Google Scholar 

Ingle KA, Kain V, Goel M et al (2015) Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation. Am J Physiol Heart Circ Physiol 309:H1827–H1836. https://doi.org/10.1152/AJPHEART.00608.2015

Article  PubMed Central  Google Scholar 

Yang G, Chen L, Grant GR et al (2016) Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med 8:324ra16. https://doi.org/10.1126/scitranslmed.aad3305

Article  PubMed Central  Google Scholar 

Song S, Tien C-L, Cui H et al (2022) Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox. Circulation 145:448–464. https://doi.org/10.1161/CIRCULATIONAHA.121.056076

Article  PubMed Central  Google Scholar 

Alibhai FJ, LaMarre J, Reitz CJ et al (2017) Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol 105:24–37. https://doi.org/10.1016/j.yjmcc.2017.01.008

Article  Google Scholar 

Lefta M, Campbell KS, Feng HZ et al (2012) Development of dilated cardiomyopathy in Bmal1-deficient mice. Am J Physiol Heart Circ Physiol 303:H475. https://doi.org/10.1152/AJPHEART.00238.2012

Article  PubMed Central  Google Scholar 

Alibhai FJ, Tsimakouridze EV, Chinnappareddy N et al (2014) Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res 114:1713–1722. https://doi.org/10.1161/CIRCRESAHA.114.302995

Article  Google Scholar 

Martino TA, Tata N, Belsham DD et al (2007) Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertens Dallas Tex 1979 49:1104–1113. https://doi.org/10.1161/HYPERTENSIONAHA.106.083568

Scheer FA, Ter Horst GJ, van Der Vliet J, Buijs RM (2001) Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol Heart Circ Physiol 280:H1391-1399. https://doi.org/10.1152/ajpheart.2001.280.3.H1391

Article  Google Scholar 

Vallat R, Shah VD, Redline S et al (2020) Broken sleep predicts hardened blood vessels. PLoS Biol 18:e3000726. https://doi.org/10.1371/JOURNAL.PBIO.3000726

Article  PubMed Central  Google Scholar 

Mahmood A, Ray M, Dobalian A et al (2021) Insomnia symptoms and incident heart failure: a population-based cohort study. Eur Heart J 42:4169–4176. https://doi.org/10.1093/EURHEARTJ/EHAB500

Article  PubMed Central  Google Scholar 

Yan B, Li R, Li J et al (2021) Sleep timing may predict congestive heart failure: a community-based cohort study. J Am Heart Assoc 10:e018385. https://doi.org/10.1161/JAHA.120.018385

Article  PubMed Central  Google Scholar 

Wang Z, Yang W, Li X et al (2022) Association of sleep duration, napping, and sleep patterns with risk of cardiovascular diseases: a nationwide twin study. J Am Heart Assoc 11:e025969. https://doi.org/10.1161/JAHA.122.025969

Article  PubMed Central  Google Scholar 

Jia Y, Guo D, Sun L et al (2022) Self-reported daytime napping, daytime sleepiness, and other sleep phenotypes in the development of cardiometabolic diseases: a Mendelian randomization study. Eur J Prev Cardiol 29:1982–1991. https://doi.org/10.1093/eurjpc/zwac123

Article 

留言 (0)

沒有登入
gif