Potential of plasma biomarkers for heart failure prediction, management, and prognosis: A multiomics perspective

Heidenreich PA, Bozkurt B, Aguilar D et al (2022) 2022 AHA/ACC/HFSA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145(18):e895–e1032. https://doi.org/10.1161/cir.0000000000001063

Article  PubMed  Google Scholar 

McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

Article  PubMed  CAS  Google Scholar 

Sukumar S, Wasfy JH, Januzzi JL et al (2023) Financial toxicity of medical management of heart failure: JACC review topic of the week. J Am Coll Cardiol 81(20):2043–2055. https://doi.org/10.1016/j.jacc.2023.03.402

Article  PubMed  PubMed Central  Google Scholar 

Urbich M, Globe G, Pantiri K et al (2020) A systematic review of medical costs associated with heart failure in the USA (2014–2020). Pharmacoeconomics 38(11):1219–1236. https://doi.org/10.1007/s40273-020-00952-0

Article  PubMed  PubMed Central  Google Scholar 

Teimourizad A, Jafari A, Esmaeilzadeh F (2024) Budget impact analyses for treatment of heart failure. Syst Rev Heart Fail Rev 29(4):785–797. https://doi.org/10.1007/s10741-024-10397-8

Article  Google Scholar 

Hao Z, Zhang Y (2022) Dapagliflozin in heart failure with reduced ejection fraction a real-world study. Cardiovasc Innov Appl 6(4):219–223. https://doi.org/10.15212/cvia.2022.0005

Article  Google Scholar 

Bayes-Genis A, Liu PP, Lanfear DE et al (2020) Omics phenotyping in heart failure: the next frontier. Eur Heart J 41(36):3477–3484. https://doi.org/10.1093/eurheartj/ehaa270

Article  PubMed  CAS  Google Scholar 

Jiang P, Chan CW, Chan KC et al (2015) Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 112(11):E1317-1325. https://doi.org/10.1073/pnas.1500076112

Article  PubMed  PubMed Central  CAS  Google Scholar 

Quake S (2012) Sizing up cell-free DNA. Clin Chem 58(3):489–490. https://doi.org/10.1373/clinchem.2011.174250

Article  PubMed  CAS  Google Scholar 

Corcoran RB, Chabner BA (2018) Application of cell-free DNA analysis to cancer treatment. N Engl J Med 379(18):1754–1765. https://doi.org/10.1056/NEJMra1706174

Article  PubMed  CAS  Google Scholar 

Jamshidi A, Liu MC, Klein EA et al (2022) Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 40(12):1537-1549.e1512. https://doi.org/10.1016/j.ccell.2022.10.022

Article  PubMed  CAS  Google Scholar 

Bianchi DW, Chiu RWK (2018) Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med 379(5):464–473. https://doi.org/10.1056/NEJMra1705345

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lo Y M D, Han D S C, Jiang P et al. (2021) Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 372(6538). https://doi.org/10.1126/science.aaw3616

Yokokawa T, Misaka T, Kimishima Y et al (2020) Clinical significance of circulating cardiomyocyte-specific cell-free DNA in patients with heart failure: a proof-of-concept study. Can J Cardiol 36(6):931–935. https://doi.org/10.1016/j.cjca.2019.10.016

Article  PubMed  Google Scholar 

Salzano A, Israr MZ, Garcia DF et al (2021) Circulating cell-free DNA levels are associated with adverse outcomes in heart failure: testing liquid biopsy in heart failure. Eur J Prev Cardiol 28(9):e28–e31. https://doi.org/10.1177/2047487320912375

Article  PubMed  Google Scholar 

Krychtiuk KA, Wurm R, Ruhittel S et al (2020) Release of mitochondrial DNA is associated with mortality in severe acute heart failure. Eur Heart J Acute Cardiovasc Care 9(5):419–428. https://doi.org/10.1177/2048872618823405

Article  PubMed  Google Scholar 

Zhang Q, He X, Ling J et al (2022) Association between circulating cell-free DNA level at admission and the risk of heart failure incidence in acute myocardial infarction patients. DNA Cell Biol 41(8):742–749. https://doi.org/10.1089/dna.2022.0238

Article  PubMed  CAS  Google Scholar 

Zaravinos A, Tzoras S, Apostolakis S et al (2011) Levosimendan reduces plasma cell-free DNA levels in patients with ischemic cardiomyopathy. J Thromb Thrombolysis 31(2):180–187. https://doi.org/10.1007/s11239-010-0527-8

Article  PubMed  CAS  Google Scholar 

De Vlaminck I, Valantine H A, Snyder T M et al (2014) Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med 6(241):241ra277. https://doi.org/10.1126/scitranslmed.3007803

Agbor-Enoh S, Tunc I, De Vlaminck I et al (2017) Applying rigor and reproducibility standards to assay donor-derived cell-free DNA as a non-invasive method for detection of acute rejection and graft injury after heart transplantation. J Heart Lung Transplant 36(9):1004–1012. https://doi.org/10.1016/j.healun.2017.05.026

Article  PubMed  PubMed Central  Google Scholar 

Agbor-Enoh S, Shah P, Tunc I et al (2021) Cell-free DNA to detect heart allograft acute rejection. Circulation 143(12):1184–1197. https://doi.org/10.1161/circulationaha.120.049098

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shah P, Agbor-Enoh S, Lee S et al (2024) Racial differences in donor-derived cell-free DNA and mitochondrial DNA after heart transplantation, on behalf of the GRAfT investigators. Circ Heart Fail 17(4):e011160. https://doi.org/10.1161/circheartfailure.123.011160

Article  PubMed  CAS  Google Scholar 

Agbor-Enoh S, Fideli U, Doveikis J et al (2016) Genomic Research Alliance for Transplantation (GRAfT): a model for long term transplant studies in thoracic organ transplantation. J Heart Lung Transplant 35(4):S161. https://doi.org/10.1016/j.healun.2016.01.449

Article  Google Scholar 

Tsui NB, Ng EK, Lo YM (2002) Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 48(10):1647–1653

Article  PubMed  CAS  Google Scholar 

El-Hefnawy T, Raja S, Kelly L et al (2004) Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem 50(3):564–573. https://doi.org/10.1373/clinchem.2003.028506

Article  PubMed  CAS  Google Scholar 

Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120(2):381–399. https://doi.org/10.1161/circresaha.116.308434

Article  PubMed  CAS  Google Scholar 

McDermott JE, Wang J, Mitchell H et al (2013) Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn 7(1):37–51. https://doi.org/10.1517/17530059.2012.718329

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goossens N, Nakagawa S, Sun X et al (2015) Cancer biomarker discovery and validation. Transl Cancer Res 4(3):256–269. https://doi.org/10.3978/j.issn.2218-676X.2015.06.04

Article  PubMed  CAS  Google Scholar 

Ward Z, Schmeier S, Pearson J et al. (2022) Identifying candidate circulating RNA markers for coronary artery disease by deep RNA-sequencing in human plasma. Cells 11(20). https://doi.org/10.3390/cells11203191

Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114(10):1569–1575. https://doi.org/10.1161/circresaha.114.303915

Article  PubMed  CAS  Google Scholar 

Turkieh A, Beseme O, Saura O et al (2024) LIPCAR levels in plasma-derived extracellular vesicles is associated with left ventricle remodeling post-myocardial infarction. J Transl Med 22(1):31. https://doi.org/10.1186/s12967-023-04820-1

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif