Treating heart failure by targeting the vagus nerve

Hadaya J, Ardell JL (2020) Autonomic modulation for cardiovascular disease. Front Physiol 11:617459. https://doi.org/10.3389/fphys.2020.617459

Article  PubMed  PubMed Central  Google Scholar 

Guzzetti S, Magatelli R, Borroni E, Mezzetti S (2001) Heart rate variability in chronic heart failure. Auton Neurosci Basic Clin 90:102–105. https://doi.org/10.1016/S1566-0702(01)00274-0

Article  CAS  Google Scholar 

Dickerson LW, Rodak DJ, Fleming TJ et al (1998) Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton Nerv Syst 70:129–141. https://doi.org/10.1016/s0165-1838(98)00048-4

Article  CAS  PubMed  Google Scholar 

Castiglione V, Gentile F, Ghionzoli N et al (2023) Pathophysiological rationale and clinical evidence for neurohormonal modulation in heart failure with preserved ejection fraction. Card Fail Rev 9:e09. https://doi.org/10.15420/cfr.2022.23

Article  PubMed  PubMed Central  Google Scholar 

Palau P, Seller J, Domínguez E et al (2021) Effect of β-blocker withdrawal on functional capacity in heart failure and preserved ejection fraction. J Am Coll Cardiol 78:2042–2056. https://doi.org/10.1016/j.jacc.2021.08.073

Article  CAS  PubMed  Google Scholar 

Kaye DM, Nanayakkara S, Wang B et al (2022) Characterization of cardiac sympathetic nervous system and inflammatory activation in HFpEF patients. JACC Basic Transl Sci 7:116–127. https://doi.org/10.1016/j.jacbts.2021.11.007

Article  PubMed  PubMed Central  Google Scholar 

Takeda R, Hissen SL, Akins JD et al (1979) (2024) Sympathetic neural control at rest and during the cold pressor test in patients with heart failure with preserved ejection fraction. Hypertens Dallas Tex 81:917–926. https://doi.org/10.1161/HYPERTENSIONAHA.123.21918

Article  CAS  Google Scholar 

Kittipibul V, Fudim M (2022) Tackling inflammation in heart failure with preserved ejection fraction: resurrection of vagus nerve stimulation? J Am Heart Assoc 11:e024481. https://doi.org/10.1161/JAHA.121.024481

Article  PubMed  PubMed Central  Google Scholar 

Giannoni A, Gentile F, Buoncristiani F et al (2022) Chemoreflex and baroreflex sensitivity hold a strong prognostic value in chronic heart failure. JACC Heart Fail 10:662–676. https://doi.org/10.1016/j.jchf.2022.02.006

Article  PubMed  Google Scholar 

van Bilsen M, Patel HC, Bauersachs J et al (2017) The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 19:1361–1378. https://doi.org/10.1002/ejhf.921

Article  PubMed  Google Scholar 

Roy A, Guatimosim S, Prado VF et al (2015) Cholinergic activity as a new target in diseases of the heart. Mol Med Camb Mass 20:527–537. https://doi.org/10.2119/molmed.2014.00125

Article  PubMed  PubMed Central  Google Scholar 

Gentile F, Passino C, Emdin M, Giannoni A (2022) Baroreflex activation therapy in heart failure: targeting the right patient. Eur J Heart Fail 24:1674–1676. https://doi.org/10.1002/ejhf.2627

Article  PubMed  Google Scholar 

Dasari TW, Csipo T, Amil F et al (2021) Effects of low-level tragus stimulation on endothelial function in heart failure with reduced ejection fraction. J Card Fail 27:568–576. https://doi.org/10.1016/j.cardfail.2020.12.017

Article  PubMed  Google Scholar 

Stavrakis S, Elkholey K, Morris L et al (2022) Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: a pilot randomized clinical trial. J Am Heart Assoc 11:e023582. https://doi.org/10.1161/JAHA.121.023582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shivkumar K, Ajijola OA, Anand I et al (2016) Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 594:3911–3954. https://doi.org/10.1113/JP271870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hopkins DA, Bieger D, deVente J, Steinbusch WM (1996) Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy. Prog Brain Res 107:79–96. https://doi.org/10.1016/s0079-6123(08)61859-2

Article  CAS  PubMed  Google Scholar 

Plecha DM, Randall WC, Geis GS, Wurster RD (1988) Localization of vagal preganglionic somata controlling sinoatrial and atrioventricular nodes. Am J Physiol 255:R703-708. https://doi.org/10.1152/ajpregu.1988.255.5.R703

Article  CAS  PubMed  Google Scholar 

Ottaviani MM, Vallone F, Micera S, Recchia FA (2022) Closed-loop vagus nerve stimulation for the treatment of cardiovascular diseases: state of the art and future directions. Front Cardiovasc Med 9:866957. https://doi.org/10.3389/fcvm.2022.866957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlson MD, Geha AS, Hsu J et al (1992) Selective stimulation of parasympathetic nerve fibers to the human sinoatrial node. Circulation 85:1311–1317. https://doi.org/10.1161/01.cir.85.4.1311

Article  CAS  PubMed  Google Scholar 

Gatti PJ, Johnson TA, Massari VJ (1996) Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? J Auton Nerv Syst 57:123–127. https://doi.org/10.1016/0165-1838(95)00104-2

Article  CAS  PubMed  Google Scholar 

Zandstra TE, Notenboom RGE, Wink J et al (2021) Asymmetry and heterogeneity: part and parcel in cardiac autonomic innervation and function. Front Physiol 12:665298. https://doi.org/10.3389/fphys.2021.665298

Article  PubMed  PubMed Central  Google Scholar 

Ardell JL, Andresen MC, Armour JA et al (2016) Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 594:3877–3909. https://doi.org/10.1113/JP271869

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hopkins DA, Armour JA (1989) Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. J Auton Nerv Syst 26:213–222. https://doi.org/10.1016/0165-1838(89)90170-7

Article  CAS  PubMed  Google Scholar 

Paintal AS (1953) A study of right and left atrial receptors. J Physiol 120:596–610. https://doi.org/10.1113/jphysiol.1953.sp004920

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campagna JA, Carter C (2003) Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology 98:1250–1260. https://doi.org/10.1097/00000542-200305000-00030

Article  PubMed  Google Scholar 

Lumbers ER, McCloskey DI, Potter EK (1979) Inhibition by angiotensin II of baroreceptor-evoked activity in cardiac vagal efferent nerves in the dog. J Physiol 294:69–80. https://doi.org/10.1113/jphysiol.1979.sp012915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thayer JF, Loerbroks A, Sternberg EM (2011) Inflammation and cardiorespiratory control: the role of the vagus nerve. Respir Physiol Neurobiol 178:387–394. https://doi.org/10.1016/j.resp.2011.05.016

Article  CAS  PubMed  Google Scholar 

Bonaz B, Sinniger V, Pellissier S (2016) Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 594:5781–5790. https://doi.org/10.1113/JP271539

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif