Deep learning model using planar whole-body bone scintigraphy for diagnosis of skull base invasion in patients with nasopharyngeal carcinoma

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 74:229–263. https://doi.org/10.3322/caac.21834

Article  Google Scholar 

Cao X, Cao Y, Lin Q, Man Z, Wang Y, Cheng D, Deperlioglu O (2022) Classification of thoracic bone scintigraphic images using ResNet with attention modules. In 2nd International Conference on Signal Image Processing and Communication (ICSIPC 2022). 12246: 215–222

Feng Y, Cao C, Hu Q, Chen X (2019) Grading of MRI-detected skull-base invasion in nasopharyngeal carcinoma with skull-base invasion after intensity-modulated radiotherapy. Radiat Oncol 14:10. https://doi.org/10.1186/s13014-019-1214-3

Article  PubMed  PubMed Central  Google Scholar 

Foreman SC, Schinz D, Husseini ME, Goller SS, Jürgen Weißinger A-S, Dietrich M, Renz M-C, Metz GC, Feuerriegel B, Wiestler R, Stahl BJ, Schwaiger, Marcus R, Makowski JS, Kirschke, Alexandra S, Gersing (2024) Deep learning to differentiate benign and malignant vertebral fractures at multidetector CT. Radiology 310:e231429. https://doi.org/10.1148/radiol.231429

Gorolay VV, Niles NN, Huo YR, Ahmadi N, Hanneman K, Thompson E, Chan MV (2022) MRI detection of suspected nasopharyngeal carcinoma: a systematic review and meta-analysis. Neuroradiology 64:1471–1481. https://doi.org/10.1007/s00234-022-02941-w

Article  PubMed  PubMed Central  Google Scholar 

Gustafsson A, Örndahl E, Minarik D, Cederholm K, Frantz S, Hagerman J, Johansson L, Lindqvist JF, Jonsson C (2022) A multicentre simulation study of planar whole-body bone scintigraphy in Sweden. EJNMMI Phys 9:12. https://doi.org/10.1186/s40658-022-00435-5

Article  PubMed  PubMed Central  Google Scholar 

Hajianfar G, Sabouri M, Salimi Y, Amini M, Bagheri S, Jenabi E, Hekmat S, Maghsudi M, Mansouri Z, Khateri M, Jamshidi MH (2023) Artificial intelligence-based analysis of whole-body bone scintigraphy: the quest for the optimal deep learning algorithm and comparison with human observer performance. Zeitschrift für Medizinische Physik S0939-3889:00008–9. https://doi.org/10.1016/j.zemedi.2023.01.008

Hiyama T, Kuno H, Sekiya K, Tsushima S, Sakai O, Kusumoto M, Kobayashi T (2019) Bone subtraction iodine imaging using area detector CT for evaluation of Skull Base Invasion by Nasopharyngeal Carcinoma. AJNR Am J Neuroradiol 40:135–141. https://doi.org/10.3174/ajnr.A5906

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang K, Huang S, Chen G, Li X, Li S, Liang Y, Gao Y, Hanchuan Peng (2023) An end-to-end multi-task system of automatic lesion detection and anatomical localization in whole-body bone scintigraphy by deep learning. Bioinf (Oxford England) 39:btac753. https://doi.org/10.1093/bioinformatics/btac753

Article  CAS  Google Scholar 

Ibrahim A, Vaidyanathan A, Primakov S, Belmans F, Bottari F, Refaee T, Lovinfosse P, Jadoul A, Derwael C, Hertel F, Woodruff HC, Helle D, Zacho P, Lambin FM, Mottaghy, Hustinx R (2023) Deep learning based identification of bone scintigraphies containing metastatic bone disease foci, Cancer Imaging, 23, 12. https://doi.org/10.1186/s40644-023-00524-3

Li W, Zhang RS, Zhang LQ, Lu BG, Fu WH (2017) Value of 99Tcm-MDP SPECT/CT in clinical decision-making for nasopharyngeal carcinoma and a comparison of the values of different imaging techniques for diagnosing skull-base bone invasion. Zhonghua Zhong Liu Za Zhi 39:133–137. https://doi.org/10.3760/cma.j.issn.0253-3766.2017.02.011

Article  CAS  PubMed  Google Scholar 

Li S, Luo C, Huang W, Zhu S, Ruan G, Liu L, Li H (2022a) Value of skull base invasion subclassification in nasopharyngeal carcinoma: implication for prognostic stratification and use of induction chemotherapy. Eur Radiol 32:7767–7777. https://doi.org/10.1007/s00330-022-08864-7

Article  PubMed  PubMed Central  Google Scholar 

Li T, Lin Q, Guo Y, Zhao S, Zeng X, Man Z, Cao Y, Yonghua, Hu (2022b) Automated detection of skeletal metastasis of lung cancer with bone scans using convolutional nuclear network. Phys Med Biol 67. https://doi.org/10.1088/1361–6560/ac4565

Liu S, Feng M, Qiao T, Cai H, Xu K, Yu X, Jiang W, Lv Z, Wang Y, Li D (2022) Deep learning for the Automatic diagnosis and analysis of bone metastasis on bone scintigrams. Cancer Manage Res 14:51–65. https://doi.org/10.2147/CMAR.S340114

Article  Google Scholar 

Maher D, Dunn D, Aw G, Taheri T, Kenny L, Sommerville R, Morrison E (2023) Still a challenging diagnosis: perineural spread of head and neck cutaneous SCC and the limitations of MRI imaging. ANZ J Surg 93:1077–1078. https://doi.org/10.1111/ans.18110

Article  PubMed  Google Scholar 

Nakagawa J, Fujima N, Hirata K, Harada T, Wakabayashi N, Takano Y, Homma A, Kano S, Minowa K, Kudo K (2024) Diagnosis of skull-base invasion by nasopharyngeal tumors on CT with a deep-learning approach. Japanese J Radiol 42:450–459. https://doi.org/10.1007/s11604-023-01527-7

Article  CAS  Google Scholar 

Russell BC, Torralba A, Murphy KP, Freeman WT (2008) LabelMe: a database and web-based tool for image annotation. Int J Comput Vision 77:157–173. https://doi.org/10.1007/s11263-007-0090-8

Article  Google Scholar 

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, 2017: 618–626

Tejani AS, Klontzas ME, Gatti AA, Mongan JT, Moy L, Park SH, Kahn CE (2024) Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update. Radiology. Artificial intelligence, 6, e240300. https://doi.org/10.1148/ryai.240300

Vicentini JRT, Bredella MA (2023) Whole body imaging in musculoskeletal oncology: when, why, and how, skeletal Radiol, 52: 281 – 95. 52:281–295. https://doi.org/10.1007/s00256-022-04112-7

Wang Y, Lin Q, Zhao S, Zeng X, Zheng B, Cao Y, Man Z (2024) Automated diagnosis of bone metastasis by classifying bone scintigrams using a self-defined Deep Learning Model. Curr Med Imaging. https://doi.org/10.2174/0115734056281578231212104108

Article  PubMed  Google Scholar 

Wu B, Guo Y, Yang Hai-hua, Gao Qian-gang, Tian Y (2022) Predicting Bone Metastasis Risk based on Skull Base Invasion in locally advanced nasopharyngeal carcinoma’. Front Oncol 12:812358. https://doi.org/10.3389/fonc.2022.812358

Article  PubMed  PubMed Central  Google Scholar 

Wu W, Xia J, Li B, Liu W, Ge Z, Tan Z, Bu Q, Chen W, Li Y (2023) Feasibility evaluation of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of skull-base invasion in nasopharyngeal carcinoma. J Cancer 14(2):290–298. https://doi.org/10.7150/jca.80679

Article  PubMed  PubMed Central  Google Scholar 

Yen W-J, Liu C-T, Chi Y-M, Chin-Chuan C (2022) Skeletal scintigraphy as an important complement for detecting bone metastasis from nasopharyngeal carcinoma. J Int Med Res 50:3000605221116765. https://doi.org/10.1177/03000605221116765

Article  CAS  PubMed  Google Scholar 

Yi W, Liu ZG, Li X, Tang J, Jiang CB, Hu JY, Tu ZW, Wang H, Niu DL, Xia YF (2016) CT-diagnosed severe skull base bone destruction predicts distant bone metastasis in early N-stage nasopharyngeal carcinoma. OncoTargets Therapy 9:7011–7017. https://doi.org/10.2147/OTT.S99717

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhan Y, Wang P, Wang Y, Wang Y, Tang Z (2023) Dual-energy CT for the detection of skull base invasion in nasopharyngeal carcinoma: comparison of simulated single-energy CT and MRI, insights into imaging. 14:95. https://doi.org/10.1186/s13244-023-01444-3

Zhang Shu-xu, Han Peng-hui, Zhang Guo-qian, Wang Rui-hao, Ge Yong-bin, Ren Zhi-gang, Li Jian-sheng, Wen-hai Fu (2014) Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma. Biomed Mater Eng 24:1117–1124. https://doi.org/10.3233/BME-130911

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif