Identification of age-associated microbial changes via long-read 16S sequencing

Wilmoth JR, Bas D, Mukherjee S, Hanif N. World social report 2023: leaving no one behind in an ageing world. UN; 2023.

Boehme M, Guzzetta KE, Bastiaanssen TF, Van De Wouw M, Moloney GM, Gual-Grau A, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging. 2021;1(8):666–76.

Article  PubMed  Google Scholar 

Ghosh TS, Shanahan F, O’Toole PW. The gut microbiome as a modulator of healthy ageing. Nat Reviews Gastroenterol Hepatol. 2022;19(9):565–84.

Article  Google Scholar 

Herzog EL, Wäfler M, Keller I, Wolf S, Zinkernagel MS, Zysset-Burri DC. The importance of age in compositional and functional profiling of the human intestinal microbiome. PLoS ONE. 2021;16(10):e0258505.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metabolism. 2021;3(2):274–86.

Article  CAS  Google Scholar 

Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J. Gut microbiota signatures of longevity. Curr Biol. 2016;26(18):R832–3.

Article  PubMed  CAS  Google Scholar 

Wang F, Yu T, Huang G, Cai D, Liang X, Su H, et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25(8):1195–204.

Article  PubMed  CAS  Google Scholar 

Chaudhari DS, Dhotre DP, Agarwal DM, Gaike AH, Bhalerao D, Jadhav P, et al. Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age. Sci Rep. 2020;10(1):5685.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Takagi T, Naito Y, Inoue R, Kashiwagi S, Uchiyama K, Mizushima K, et al. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J Gastroenterol. 2019;54:53–63.

Article  PubMed  Google Scholar 

Gehrig JL, Portik DM, Driscoll MD, Jackson E, Chakraborty S, Gratalo D, et al. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb Genomics. 2022;8(3):000794.

Article  Google Scholar 

Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):5029.

Article  PubMed  PubMed Central  Google Scholar 

Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Sun D-L, Jiang X, Wu QL, Zhou N-Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol. 2013;79(19):5962–9.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Whitton C, Ho JCY, Tay Z, Rebello SA, Lu Y, Ong CN, Van Dam RM. Relative validity and reproducibility of a food frequency questionnaire for assessing dietary intakes in a multi-ethnic Asian population using 24-h dietary recalls and biomarkers. Nutrients. 2017;9(10):1059.

Article  PubMed  PubMed Central  Google Scholar 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.

Article  Google Scholar 

Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38(9):1079–86.

Article  PubMed  CAS  Google Scholar 

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and all-species living tree project (LTP) taxonomic frameworks. Nucleic Acids Res. 2014;42(D1):D643–8.

Article  PubMed  CAS  Google Scholar 

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(D1):D633–42.

Article  PubMed  CAS  Google Scholar 

O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45.

Article  PubMed  Google Scholar 

Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–8.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Lahti L, Shetty S. Introduction to the microbiome R package. Preprint at https://microbiome github io/tutorials. 2018.

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:294209.

Article  Google Scholar 

Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, Mcglinn D et al. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists, 05–26. Version 2.5-1. 2019.

Lin H, Peddada SD. Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures. Nat Methods. 2024;21(1):83–91.

Article  PubMed  CAS  Google Scholar 

Ghosh TS, Das M, Jeffery IB, O’Toole PW. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. eLife. 2020;9:e50240.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol. 2004;70(10):6113–22.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J-z, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:1–12.

Article  Google Scholar 

de la Cuesta-Zuluaga J, Kelley ST, Chen Y, Escobar JS, Mueller NT, Ley RE, et al. Age-and sex-dependent patterns of gut microbial diversity in human adults. mSystems. 2019;4(4). https://doi.org/10.1128/msystems. 00261 – 19.

Dwiyanto J, Ayub Q, Lee SM, Foo SC, Chong CW, Rahman S. Geographical separation and ethnic origin influence the human gut microbial composition: a meta-analysis from a Malaysian perspective. Microb Genomics. 2021;7(8):000619.

Article  CAS  Google Scholar 

La-Ongkham O, Nakphaichit M, Nakayama J, Keawsompong S, Nitisinprasert S. Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech. 2020;10:1–14.

Article  Google Scholar 

Singh H, Torralba MG, Moncera KJ, DiLello L, Petrini J, Nelson KE, Pieper R. Gastro-intestinal and oral microbiome signatures associated with healthy aging. Geroscience. 2019;41(6):907–21.

Article  PubMed  PubMed Central  Google Scholar 

Leite G, Pimentel M, Barlow GM, Chang C, Hosseini A, Wang J et al. Age and the aging process significantly alter the small bowel microbiome. Cell Rep. 2021;36(13).

Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5(5):e10667.

Article  PubMed  PubMed Central  Google Scholar 

Dong X, Guthrie BG, Alexander M, Noecker C, Ramirez L, Glasser NR, et al. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat Commun. 2022;13(1):7624.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341(6143):295–8.

Article 

留言 (0)

沒有登入
gif