Quorum regulated latent environmental cells of toxigenic Vibrio cholerae and their role in cholera outbreaks

Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev. 1998;62:1301–14.

Google Scholar 

World Health Organization. Cholera Annual Report 2022. Weekly Epidemiological Record 38. 2023; 98:431 – 52.

Ramamurthy T, Garg S, Sharma R, Bhattacharya SK, Nair GB, Shimada T, Takeda T, Karasawa T, Kurazano H, Pal A, Takeda Y. Emergence of a novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993;341:703–4.

Google Scholar 

Faruque SM, Sack DA, Colwell RR, Sack RB, Nair GB. Emergence and evolution of Vibrio cholerae O139. Proc Natl Acad Sci USA. 2003;100:1304–9.

Google Scholar 

Faruque SM, Chowdhury N, Kamruzzama M, Ahmad QS, Faruque AS, Salam MA, Ramamurthy T, Nair GB, Weintraub A, Sack DA. Reemergence of epidemic Vibrio cholerae O139, Bangladesh. Emerg Infect Dis. 2003;9:1116–22.

Google Scholar 

Faruque SM, Mekalanos JJ. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol. 2003;11:505–10.

Google Scholar 

Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous bacteriophage encoding cholera toxin. Science. 1996;272:1910–14.

Google Scholar 

Hassan F, Kamruzzaman M, Mekalanos J, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature. 2010;467:982–5. https://doi.org/10.1038/nature09469.

Google Scholar 

Faruque SM, Asadulghani, Saha MN, Alim ARMA, Albert MJ, Islam KMN, Mekalanos JJ. Analysis of clinical and environmental strains of nontoxigenic Vibrio cholerae for susceptibility to CTXF: molecular basis for the origination of new strains with epidemic potential. Infect Immun. 1998;66:5819–25.

Google Scholar 

Colwell RR, Huq A. Vibrios in the environment: viable but non culturable Vibrio cholerae. In: Wachsmuth IK, Blake PA, Dlsvik O, editors. Vibrio cholerae and cholera: molecular to global perspectives. Washington DC, ASM Press. 1994; pp. 117–133.

Faruque SM, Biswas K, Udden SM, Ahmad QS, Sack DA, Nair GB, Mekalanos JJ. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA. 2006;103:6350–5.

Google Scholar 

Kamruzzaman M, Udden SMN, Cameron DE, Calderwood SB, Nair GB, Mekalanos JJ, Faruque SM. Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci USA. 2010;107:1588–93.

Google Scholar 

Oliver JD. The public health significance of viable but nonculturable bacteria. In: Colwell RR, Grimes DJ, editors. Nonculturable microorganisms in the Environment. Washington DC: ASM; 2000. p.277 – 99.

Google Scholar 

Bari SM, Roky MK, Mohiuddin M, Kamruzzaman M, Mekalanos JJ, Faruque SM. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proc Natl Aca Sci USA. 2013;110:9926–31.

Google Scholar 

Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature. 2007;450:883–6.

Google Scholar 

Naser IB, Hoque MM, Faruque SN, Kamruzzaman M, Yamasaki S, Faruque SM. Vibrio cholerae strains with inactivated cqsS gene overproduce autoinducer-2 which enhances resuscitation of dormant environmental V. cholerae. PLoS ONE. 2019;14:e0223226.

Google Scholar 

Naser IB, Shishir TA, Faruque SN, Hoque MM, Hasan A, Faruque SM. Environmental prevalence of toxigenic Vibrio cholerae O1 in Bangladesh coincides with V. Cholerae non-O1 non-O139 genetic variants which overproduce AI-2. PLoS ONE. 2021;16:e0254068.

Google Scholar 

Colwell RR. Infectious disease and environment: cholera as a paradigm for waterborne disease. Int Microbiol. 2004;7:285–9.

Google Scholar 

Reguera G, Kolter R. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol. 2005;187:3551–5.

Google Scholar 

Chiavelli DA, Marsh JW, Taylor RK. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol. 2001;67:3220–5.

Google Scholar 

Watnick PI, Fullner KJ, Kolter R. A role for the mannose sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol. 1999;181:3606–9.

Google Scholar 

Nahar S, Sultana M, Naser MN, Nair GB, Watanabe H, Ohnishi M, Yamamoto S, Endtz H, Cravioto A, Sack RB, Hasan NA, Sadique A, Huq A, Colwell RR, Alam M. Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Front Microbiol. 2012;2:260. https://doi.org/10.3389/fmicb.2011.00260.

Google Scholar 

Sun S, Tay QXM, Kjelleberg S, Rice SA, McDougald D. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. ISME J. 2015;9:1812–20. https://doi.org/10.1038/ismej.2014.265.

Google Scholar 

Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, Montgomery KT, Grills G, Kucherlapati R, Mekalanos JJ. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci USA. 2005;102:3465–70.

Google Scholar 

Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA. 2006;103:1528–33.

Google Scholar 

Khan MU, Samadi AR, Huq MI, Greenough WB. Reappearance of classical Vibrio cholerae in Bangladesh. Advances in Research on Cholera and Related Diarrheas. Tokyo: KTK Scientific; 1986. pp. 3–12.

Google Scholar 

Faruque SM, Alim ARMA, Rahman MM, Siddique AK, Sack RB, Albert MJ. Clonal relationships among classical Vibrio cholerae O1 strains isolated between 1961 and 1992 in Bangladesh. J Clin Microbiol. 1993;31:2513–6.

Google Scholar 

Colwell RR, Spira WM. (1992). The ecology of Vibrio cholerae. In Cholera, Barua D., and Greenough III WB. editors, Plenum Medical Book Co., New York, USA. pp. 107–127.

Faruque SM, Islam MJ, Ahmad QS, Biswas K, Faruque AS, Nair GB, Sack RB, Sack DA, Mekalanos JJ. An improved technique for isolation of environmental Vibrio cholerae with epidemic potential: monitoring the emergence of a multiple-antibiotic-resistant epidemic strain in Bangladesh. J Infect Dis. 2006;193:1029–36.

Google Scholar 

Faruque SM, Chowdhury N, Kamruzzaman M, Dziejman M, Rahman MH, Sack DA, Nair GB, Mekalanos JJ. Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proc Natl Acad Sci USA. 2004;101:2123–8.

Google Scholar 

Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol. 2003;50:101–4.

Google Scholar 

Hammer BK, Bassler BL. Inaugural article: Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae. Proc Natl Acad Sci USA. 2007;104:11145–9.

Google Scholar 

Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell. 2004;118:69–82.

Google Scholar 

Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell. 2003;5:647–6.

Google Scholar 

Silva AJ, Benitez JA. Vibrio cholerae biofilms and cholera pathogenesis. PLoS Negl Trop Dis. 2016;10:e0004330. https://doi.org/10.1371/journal.pntd.0004330.

Google Scholar 

Nelson EJ, Chowdhury A, Harris JB, Begum YA, Chowdhury F, Khan AI, LaRocque RC, Bishop AL, Ryan ET, Camilli A, Qadri F, Calderwood SB. Complexity of rice-water stool from patients with Vibrio cholerae plays a role in the transmission of infectious diarrhea. PNAS. 2007;104:19091–96.

Google Scholar 

Jemielita M, Wingreen NS, Bassler BL. Quorum sensing controls Vibrio Cholere multicellular aggregate formation eLife 2018; 7:e42057. https://doi.org/10.7554/eLife.42057

Wu B, Liang W, Yan M, Li J, Zhao H, Cui L, Zhu F, Zhu J, Kan B. Quorum sensing regulation confronts the development of a viable but non-culturable state in Vibrio cholerae. Environ Microbiol. 2020;22:4314–22. https://doi.org/10.1111/1462-2920.15026.

Google Scholar 

Ayrapetyan M, Williams TC, Oliver JD. Interspecific quorum sensing mediates the resuscitation of viable but Nonculturable Vibrios. Appl Environ Microbiol. 2014;80:2478–83. https://doi.org/10.1128/AEM.00080-14.

Google Scholar 

Waters CM, Bassler BL. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 2006;20:2754–67.

Google Scholar 

Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol. 1997;179:4043–45.

Google Scholar 

Xavier KB, Bassler BL. LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol. 2003;6:191–7.

Google Scholar 

Cameron DE, Urbach JM, Mekalanos JJ. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci USA. 2008;105:8736–41.

Google Scholar 

Runft DL, Mitchell KC, Abuaita BH, Allen JP, Bajer S, Ginsburg K, Neely MN, Withey JH. Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol. 2014;80:1710–7.

Google Scholar 

Nag D, Mitchell K, Breen P, Withey JH. Quantifying Vibrio cholerae colonization and diarrhea in the adult zebrafish model. J Vis Exp. 2018;137:57767. https://doi.org/10.3791/57767.

Google Scholar 

Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011;5:1595–608. https://doi.org/10.1038/ismej.2011.38.

Google Scholar 

Engeszer RE, Patterson LB, Rao AA, Parichy DM. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish. 2007;4:21–40. https://doi.org/10.1089/zeb.2006.9997.

Google Scholar 

Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 2013;37:156–81.

Google Scholar 

Zhang L, Li S, Liu X, Wang Z, Jiang M, Wang R, Xie L, Liu Q, Xie X, Shang D, Li M, Wei Z, Wang Y, Fan C, Luo ZQ, Shen X. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nat Commun. 2020;11:5371. https://doi.org/10.1038/s41467-020-19243-5.

Google Scholar 

Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A. Host-induced epidemic spread of the cholera bacterium. Nature. 2002;417:642–5.

Google Scholar 

Nelson E, Harris J, Glenn Morris J, et al. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol. 2009;7:693–702. https://doi.org/10.1038/nrmicro2204.

Google Scholar 

Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci U S A. 2005;102:1702–7.

Google Scholar 

Faruque SM, Islam MJ, Ahmad QS, Faruque AS, Sack DA, Nair GB, Mekalanos JJ. Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA. 2005;102:6119–24.

Google Scholar 

留言 (0)

沒有登入
gif