Resistance to FOXM1 inhibitors in breast cancer is accompanied by impeding ferroptosis and apoptotic cell death

Bergamaschi A, Madak-Erdogan Z, Kim YJ, Choi YL, Lu H, Katzenellenbogen BS (2014) The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells. Breast Cancer Res 16:436. https://doi.org/10.1186/s13058-014-0436-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goel S, Chandarlapaty S (2022) Emerging therapies for breast cancer. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a041333

Article  Google Scholar 

Liu S, Xie SM, Liu W, Gagea M, Hanker AB, Nguyen N, Singareeka Raghavendra A, Yang-Kolodji G, Chu F, Neelapu SS et al (2023) Targeting CXCR4 abrogates resistance to trastuzumab by blocking cell cycle progression and synergizes with docetaxel in breast cancer treatment. Breast Cancer Res 251:62. https://doi.org/10.1186/s13058-023-01665-w

Article  CAS  Google Scholar 

Marra A, Trapani D, Ferraro E, Curigliano G (2023) Mechanisms of endocrine resistance in hormone receptor-positive breast cancer. Cancer Treat Res 188:219–235. https://doi.org/10.1007/978-3-031-33602-7_9

Article  PubMed  Google Scholar 

Raheem F, Karikalan SA, Batalini F, El Masry A, Mina L (2023) Metastatic ER+ Breast Cancer: Mechanisms of Resistance and Future Therapeutic Approaches. Int J Mol Sci 24:16198. https://doi.org/10.3390/ijms242216198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tryfonidis K, Zardavas D, Katzenellenbogen BS, Piccart M (2016) Endocrine treatment in breast cancer: cure, resistance and beyond. Cancer Treat Rev 50:68–81. https://doi.org/10.1016/j.ctrv.2016.08.008

Article  PubMed  Google Scholar 

Waks AG, Winer EP (2019) Breast cancer treatment: a review. Jama 321:288–300. https://doi.org/10.1001/jama.2018.19323

Article  CAS  PubMed  Google Scholar 

Guillen VS, Ziegler Y, Gopinath C, Kumar S, Dey P, Plotner BN, Dawson NZ, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS (2023) Effective combination treatments for breast cancer inhibition by FOXM1 inhibitors with other targeted cancer drugs. Breast Cancer Res Treat 198:607–621. https://doi.org/10.1007/s10549-023-06878-3

Article  CAS  PubMed  Google Scholar 

Cheng Y, Sun F, Thornton K, Jing X, Dong J, Yun G, Pisano M, Zhan F, Kim SH, Katzenellenbogen JA et al (2022) FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene 41:3899–3911. https://doi.org/10.1038/s41388-022-02398-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dey P, Wang A, Ziegler Y, Kim SH, El-Ashry D, Katzenellenbogen JA, Katzenellenbogen BS (2020) Suppression of tumor growth, metastasis, and signaling pathways by reducing FOXM1 activity in triple negative breast cancer. Cancers (Basel) 12:2677. https://doi.org/10.3390/cancers12092677

Article  CAS  PubMed  Google Scholar 

Katzenellenbogen BS, Guillen VS, Katzenellenbogen JA (2023) Targeting the oncogenic transcription factor FOXM1 to improve outcomes in all subtypes of breast cancer. Breast Cancer Res 25:76. https://doi.org/10.1186/s13058-023-01675-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nandi I, Smith HW, Sanguin-Gendreau V, Ji L, Pacis A, Papavasiliou V, Zuo D, Nam S, Attalla SS, Kim SH et al (2023) Coordinated activation of c-Src and FOXM1 drives tumor cell proliferation and breast cancer progression. J Clin Invest 133:e162324. https://doi.org/10.1172/JCI162324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziegler Y, Guillen VS, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS (2021) Transcription regulation and genome rewiring governing sensitivity and resistance to FOXM1 inhibition in breast cancer. Cancers (Basel) 13:6282. https://doi.org/10.3390/cancers13246282

Article  CAS  PubMed  Google Scholar 

Ziegler Y, Laws MJ, Sanabria Guillen V, Kim SH, Dey P, Smith BP, Gong P, Bindman N, Zhao Y, Carlson K et al (2019) Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. NPJ Breast Cancer 5:45. https://doi.org/10.1038/s41523-019-0141-7

Article  PubMed  PubMed Central  Google Scholar 

Chen X, Kang R, Kroemer G, Tang D (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 185:280–296. https://doi.org/10.1038/s41571-020-00462-0

Article  CAS  Google Scholar 

Chen X, Kang R, Kroemer G, Tang D (2021) Ferroptosis in infection, inflammation, and immunity. J Exp Med 218:e20210518. https://doi.org/10.1084/jem.20210518

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 224:266–282. https://doi.org/10.1038/s41580-020-00324-8

Article  CAS  Google Scholar 

Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK et al (2019) A Comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells 8:674. https://doi.org/10.3390/cells8070674

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 227:381–396. https://doi.org/10.1038/s41568-022-00459-0

Article  CAS  Google Scholar 

Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 18514:2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

Article  CAS  Google Scholar 

Zhang C, Liu X, Jin S, Chen Y, Guo R (2022) Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 211:47. https://doi.org/10.1186/s12943-022-01530-y

Article  Google Scholar 

Zheng J, Conrad M (2020) The metabolic underpinnings of ferroptosis. Cell Metab 326:920–937. https://doi.org/10.1016/j.cmet.2020.10.011

Article  CAS  Google Scholar 

Madak-Erdogan Z, Charn TH, Jiang Y, Liu ET, Katzenellenbogen JA, Katzenellenbogen BS (2013) Integrative genomics of gene and metabolic regulation by estrogen receptors alpha and beta, and their coregulators. Mol Syst Biol 9:676. https://doi.org/10.1038/msb.2013.28

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Laws MJ, Guillen VS, Ziegler Y, Min J, Sharma A, Kim SH, Chu D, Park BH, Oesterreich S et al (2017) Structurally novel antiestrogens elicit differential responses from constitutively active mutant estrogen receptors in breast cancer cells and tumors. Cancer Res 7720:5602–5613. https://doi.org/10.1158/0008-5472.CAN-17-1265

Article  CAS  Google Scholar 

Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 36:285–290

Google Scholar 

Yadav B, Wennerberg K, Aittokallio T, Tang J (2015) Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513. https://doi.org/10.1016/j.csbj.2015.09.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao W, Sachsenmeier K, Zhang L, Sult E, Hollingsworth RE, Yang H (2014) A new bliss independence model to analyze drug combination data. J Biomol Screen 195:817–821. https://doi.org/10.1177/1087057114521867

Article  CAS  Google Scholar 

Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, Pessia A, Tang J (2022) SynergyFinder Plus: toward better interpretation and annotation of drug combination screening datasets. Genom Proteom Bioinfor 203:587–596. https://doi.org/10.1016/j.gpb.2022.01.004

Article  Google Scholar 

Chen M, Shi Z, Sun Y, Ning H, Gu X, Zhang L (2023) Prospects for anti-tumor mechanism and potential clinical application based on glutathione peroxidase 4 mediated ferroptosis. Int J Mol Sci 24:1607. https://doi.org/10.3390/ijms24021607

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif