Adverse Event Profile of First-line Drugs for Treating Patent Ductus Arteriosus in Neonates: A Disproportionality Analysis Study of USFDA Adverse Event Reporting System

Sellmer A, Bjerre JV, Schmidt MR, McNamara PJ, Hjortdal VE, Høst B, Bech BH, Henriksen TB. Morbidity and mortality in preterm neonates with patent ductus arteriosus on day 3. Arch Dis Child Fetal Neonatal Ed. 2013;98(6):F505–10.

Article  Google Scholar 

Backes CH, Hill KD, Shelton EL, Slaughter JL, Lewis TR, Weisz DE, Mah ML, Bhombal S, Smith CV, McNamara PJ, Benitz WE, Garg V. Patent ductus arteriosus: a contemporary perspective for the pediatric and adult cardiac care provider. J Am Heart Assoc. 2022;11(17): e025784.

Article  PubMed Central  Google Scholar 

Park J, Yoon SJ, Han J, Song IG, Lim J, Shin JE, Eun HS, Park KI, Park MS, Lee SM. Patent ductus arteriosus treatment trends and associated morbidities in neonates. Sci Rep. 2021;11(1):10689.

Article  PubMed Central  Google Scholar 

Eursiriwan S, Okascharoen C, Vallibhakara SA, Pattanaprateep O, Numthavaj P, Attia J, Thakkinstian A. Comparison of various pharmacologic agents in the management of hemodynamically significant patent ductus arteriosus in preterm: a network meta-analysis and risk-benefit analysis. Biomed Hub. 2022;7(3):125–45.

Article  PubMed Central  Google Scholar 

Marconi E, Bettiol A, Ambrosio G, Perduca V, Vannacci A, Troiani S, Dani C, Mugelli A, Lucenteforte E. Efficacy and safety of pharmacological treatments for patent ductus arteriosus closure: a systematic review and network meta-analysis of clinical trials and observational studies. Pharmacol Res. 2019;148: 104418.

Article  Google Scholar 

Lavertu A, Vora B, Giacomini KM, Altman R, Rensi S. A new era in pharmacovigilance: toward real-world data and digital monitoring. Clin Pharmacol Ther. 2021;109(5):1197–202.

Article  PubMed Central  Google Scholar 

Campbell JE, Gossell-Williams M, Lee MG. A review of pharmacovigilance. West Indian Med J. 2014;63(7):771–4.

Google Scholar 

Palleria C, Leporini C, Chimirri S, Marrazzo G, Sacchetta S, Bruno L, Lista RM, Staltari O, Scuteri A, Scicchitano F, Russo E. Limitations and obstacles of the spontaneous adverse drugs reactions reporting: two “challenging” case reports. J Pharmacol Pharmacother. 2013;4(Suppl 1):S66-72.

Article  PubMed Central  Google Scholar 

Potential Signals of Serious Risks/New Safety Information Identified from the FDA Adverse Event Reporting System (FAERS). Available at: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/potential-signals-serious-risksnew-safety-information-identified-fda-adverse-event-reporting-system (Accessed on 18th June 2024).

Leitzen S, Dubrall D, Toni I, Stingl J, Schulz M, Schmid M, Neubert A, Sachs B. Analysis of the reporting of adverse drug reactions in children and adolescents in Germany in the time period from 2000 to 2019. PLoS ONE. 2021;16(3): e0247446.

Article  PubMed Central  Google Scholar 

Sridharan K, Madhoob AA, Jufairi MA, Ansari EA, Marzooq RA, Hubail Z, Hasan SJ. Gentamicin in neonates with hemodynamically significant patent ductus arteriosus. J Pharm Bioallied Sci. 2023;15(2):95–100.

Article  PubMed Central  Google Scholar 

Sivanandan S, Agarwal R. Pharmacological closure of patent ductus arteriosus: selecting the agent and route of administration. Paediatr Drugs. 2016;18(2):123–38.

Article  Google Scholar 

FDA Adverse Event Reporting System (FAERS) Public Dashboard. Available at: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (Accessed on 14th June 2024).

Faillie JL. Case-non-case studies: principle, methods, bias and interpretation. Therapie. 2019;74(2):225–32.

Article  Google Scholar 

Park G, Jung H, Heo SJ, Jung I. Comparison of data mining methods for the signal detection of adverse drug events with a hierarchical structure in postmarketing surveillance. Life (Basel). 2020;10(8):138.

PubMed Central  Google Scholar 

Evans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10(6):483–6.

Article  Google Scholar 

Practical aspects of signal detection in pharmacovigilance. Report of CIOMS working group VIII. Geneva. Available at: https://cioms.ch/wp-content/uploads/2018/03/WG8-Signal-Detection.pdf (Accessed on August 19, 2024).

Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol. 2010;196:369–405.

Article  Google Scholar 

Beath SV. Hepatic function and physiology in the newborn. Semin Neonatol. 2003;8(5):337–46.

Article  Google Scholar 

Flint RB, Roofthooft DW, van Rongen A, van Lingen RA, van den Anker JN, van Dijk M, Allegaert K, Tibboel D, Knibbe CAJ, Simons SHP. Exposure to acetaminophen and all its metabolites upon 10, 15, and 20 mg/kg intravenous acetaminophen in very-preterm infants. Pediatr Res. 2017;82(4):678–84.

Article  Google Scholar 

Terrin G, Di Chiara M, Boscarino G, Metrangolo V, Faccioli F, Onestà E, Giancotti A, Di Donato V, Cardilli V, De Curtis M. Morbidity associated with patent ductus arteriosus in preterm newborns: a retrospective case-control study. Ital J Pediatr. 2021;47(1):9.

Article  PubMed Central  Google Scholar 

Acetaminophen. Summary of product characteristics. Available at: https://www.medicines.org.uk/emc/product/5164/smpc/print (accessed on 11th August 2024).

Ibuprofen. Summary of product characteristics. Available at: https://www.medicines.org.uk/emc/product/3876/smpc/print (accessed on 11th August 2024).

Indomethacin. Summary of product characteristics. Available at: https://www.medicines.org.uk/emc/product/2946/smpc/print (accessed on August 11, 2024).

留言 (0)

沒有登入
gif