Xu K, Wang R, Xie H, Hu L, Wang C, Xu J et al (2021) Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 10(10):66. https://doi.org/10.1038/s41389-021-00355-6
Sharma R (2021) Global, regional, national burden of breast cancer in 185 countries: evidence from GLOBOCAN 2018. Breast Cancer Res Treat 187(2):557–567. https://doi.org/10.1007/s10549-020-06083-6
Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M et al (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. The Breast 66:15–23. https://doi.org/10.1016/j.breast.2022.08.010
Park M, Kim D, Ko S, Kim A, Mo K, Yoon H (2022) Breast cancer metastasis: mechanisms and therapeutic implications. Int J Mol Sci 23(12):6806. https://doi.org/10.3390/ijms23126806
Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Wang L, Zhang S, Wang X (2021) The metabolic mechanisms of breast cancer metastasis. Front Oncol 7:10. https://doi.org/10.3389/fonc.2020.602416
Chen B, Zhang G, Lai J, Xiao W, Li X, Li C et al (2021) Genetic and immune characteristics of sentinel lymph node metastases and multiple lymph node metastases compared to their matched primary breast tumours. EBioMedicine 71:103542. https://doi.org/10.1016/j.ebiom.2021.103542
Liang Y, Zhang H, Song X, Yang Q (2020) Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.08.012
Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. https://doi.org/10.1083/jcb.201102147
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. https://doi.org/10.1038/s41467-020-18794-x
Hu Q, Hong Y, Qi P, Lu G, Mai X, Xu S et al (2021) Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat Commun 12(1):2186. https://doi.org/10.1038/s41467-021-22300-2
Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S et al (2020) Interrogation of the microenvironmental landscape in brain tumors reveals Disease-specific alterations of immune cells. Cell 181(7):1643-1660.e17. https://doi.org/10.1016/j.cell.2020.05.007
Biermann J, Melms JC, Amin AD, Wang Y, Caprio LA, Karz A et al (2022) Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185(14):2591-2608.e30. https://doi.org/10.1016/j.cell.2022.06.007
Friebel E, Kapolou K, Unger S, Núñez NG, Utz S, Rushing EJ et al (2020) Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-Invading leukocytes. Cell 181(7):1626-1642.e20. https://doi.org/10.1016/j.cell.2020.04.055
Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, Stanger BZ et al (2021) Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39(8):1150-1162.e9. https://doi.org/10.1016/j.ccell.2021.05.005
Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S et al (2018) Identification of the tumour transition states occurring during EMT. Nature 556(7702):463–468. https://doi.org/10.1038/s41586-018-0040-3
Davis A, Gao R, Navin N (2017) Tumor evolution: Linear, branching, neutral or punctuated? Rev Cancer Biochim Biophys Acta. https://doi.org/10.1016/j.bbcan.2017.01.003
Gerstberger S, Jiang Q, Ganesh K (2023) Metastasis. Cell 186(8):1564–1579. https://doi.org/10.1016/j.cell.2023.03.003
Pal B, Chen Y, Vaillant F, Capaldo BD, Joyce R, Song X, Bryant VL, Penington JS, Di Stefano L, Ribera NT, Wilcox S, Mann GB, Papenfuss AT, Lindeman GJ, Smyth GK, Visvader JE (2021) A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J 40:e107333
Wang X, Zhou Y, Wu Z, Xie C, Xu W, Zhou Q, Yang D, Zhu D, Wang MW, Wang L (2024) Single-cell transcriptomics reveals the role of antigen presentation in liver metastatic breast cancer. iScience. https://doi.org/10.1016/j.isci.2024.108896
R Core Team. R (2021) A Language and environment for statistical computing. Vienna: R foundation for statistical computing. https://www.R-project.org/
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A et al (2021) Integrated analysis of multimodal single-cell data. Cell 184(13):3573-3587.e29. https://doi.org/10.1016/j.cell.2021.04.048
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM et al (2019) Comprehensive integration of single-cell data. Cell 177(7):1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031
Tickle T, Tirosh I, Georgescu C, Brown M, Haas B (2019) InferCNV of the trinity CTAT project. Cambridge: Klarman Cell Observatory, Broad Institute of MIT and Harvard. https://github.com/broadinstitute/inferCNV. Accessed 27 Mar 2024
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6
Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR et al (2022) The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science. https://doi.org/10.1126/science.abl4896
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97. https://doi.org/10.1093/nar/gkw377
Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B Stat Methodol 64(3):479–498. https://doi.org/10.1111/1467-9868.00346
Tellez-Gabriel M, Ory B, Lamoureux F, Heymann M-F, Heymann D (2016) Tumour heterogeneity: the key advantages of single-cell analysis. Int J Mol Sci 17(12):2142. https://doi.org/10.3390/ijms17122142
Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81–94. https://doi.org/10.1038/nrclinonc.2017.166
Shlien A, Malkin D (2009) Copy number variations and cancer. Genome Med 1(6):62. https://doi.org/10.1186/gm62
Steele CD, Abbasi A, Islam SMA, Bowes AL, Khandekar A, Haase K et al (2022) Signatures of copy number alterations in human cancer. Nature 606(7916):984–991. https://doi.org/10.1038/s41586-022-04738-6
Cai Y, Crowther J, Pastor T, Abbasi Asbagh L, Baietti MF, De Troyer M et al (2016) Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. Cancer Cell 29(5):751–766. https://doi.org/10.1016/j.ccell.2016.04.003
Hernández-Gómez C, Hernández-Lemus E, Espinal-Enríquez J (2023) CNVs in 8q24.3 do not influence gene co-expression in breast cancer subtypes. Front Genet. https://doi.org/10.3389/fgene.2023.1141011
Muthuswami M, Ramesh V, Banerjee S, Viveka Thangaraj S, Periasamy J, Bhaskar Rao D et al (2013) Breast Tumors with elevated expression of 1q candidate genes confer poor clinical outcome and sensitivity to Ras/PI3K inhibition. PLoS ONE 8(10):e77553. https://doi.org/10.1371/journal.pone.0077553
Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Rougé C et al (2006) Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q. Br J Cancer 95(10):1439–1447. https://doi.org/10.1038/sj.bjc.6603433
留言 (0)