Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauss A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U (2020) cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280. https://doi.org/10.3389/fimmu.2020.01280
Article CAS PubMed Google Scholar
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC (2019) Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol 107:38–52. https://doi.org/10.1016/j.biocel.2018.12.001
Article CAS PubMed Google Scholar
Han J, Won M, Kim JH, Jung E, Min K, Jangili P, Kim JS (2020) Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev 49(22):7856–7878. https://doi.org/10.1039/d0cs00379d
Article CAS PubMed Google Scholar
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988. https://doi.org/10.1073/pnas.0530291100
Article CAS PubMed Google Scholar
Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN, Manjili MH (2012) CD44(+)/CD24(−/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 43(3):364–373. https://doi.org/10.1016/j.humpath.2011.05.005
Article CAS PubMed Google Scholar
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5(1):8. https://doi.org/10.1038/s41392-020-0110-5
Article CAS PubMed Google Scholar
Elbaiomy MA, Akl T, Atwan N, Elsayed AA, Elzaafarany M, Shamaa S (2020) Clinical impact of breast cancer stem cells in metastatic breast cancer patients. J Oncol 2020:2561726. https://doi.org/10.1155/2020/2561726
Article CAS PubMed Google Scholar
Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66(6):801–817. https://doi.org/10.1016/j.molcel.2017.05.015
Article CAS PubMed Google Scholar
Xia P (2017) CD133 mRNA may be a suitable prognostic marker for human breast cancer. Stem Cell Investig. https://doi.org/10.21037/sci.2017.10.03
Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241. https://doi.org/10.1158/1078-0432.CCR-08-1479
Article CAS PubMed Google Scholar
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567. https://doi.org/10.1016/j.stem.2007.08.014
Article CAS PubMed Google Scholar
Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, Grabau D, Ferno M, Borg A, Hegardt C (2008) The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53. https://doi.org/10.1186/bcr2108
Article CAS PubMed Google Scholar
Huang JL, Oshi M, Endo I, Takabe K (2021) Clinical relevance of stem cell surface markers CD133, CD24, and CD44 in colorectal cancer. Am J Cancer Res 11(10):5141–5154
Barzegar Behrooz A, Syahir A, Ahmad S (2019) CD133: beyond a cancer stem cell biomarker. J Drug Target 27(3):257–269. https://doi.org/10.1080/1061186X.2018.1479756
Article CAS PubMed Google Scholar
Akbari M, Shomali N, Faraji A, Shanehbandi D, Asadi M, Mokhtarzadeh A, Shabani A, Baradaran B (2020) CD133: an emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol Int 44(2):368–380. https://doi.org/10.1002/cbin.11243
Aomatsu N, Yashiro M, Kashiwagi S, Takashima T, Ishikawa T, Ohsawa M, Wakasa K, Hirakawa K (2012) CD133 is a useful surrogate marker for predicting chemosensitivity to neoadjuvant chemotherapy in breast cancer. PLoS ONE 7(9):e45865. https://doi.org/10.1371/journal.pone.0045865
Article CAS PubMed Google Scholar
Joseph C, Arshad M, Kurozomi S, Althobiti M, Miligy IM, Al-Izzi S, Toss MS, Goh FQ, Johnston SJ, Martin SG, Ellis IO, Mongan NP, Green AR, Rakha EA (2019) Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Res Treat 174(2):387–399. https://doi.org/10.1007/s10549-018-05085-9
Article CAS PubMed Google Scholar
Brugnoli F, Grassilli S, Al-Qassab Y, Capitani S, Bertagnolo V (2019) CD133 in breast cancer cells: more than a stem cell marker. J Oncol 2019:7512632. https://doi.org/10.1155/2019/7512632
Article CAS PubMed Google Scholar
Kumari M, Krishnamurthy PT, Sola P (2020) Targeted drug therapy to overcome chemoresistance in triple-negative breast cancer. Curr Cancer Drug Targets 20(8):559–572. https://doi.org/10.2174/1568009620666200506110850
Article CAS PubMed Google Scholar
Zhao P, Lu Y, Jiang X, Li X (2011) Clinicopathological significance and prognostic value of CD133 expression in triple-negative breast carcinoma. Cancer Sci 102(5):1107–1111. https://doi.org/10.1111/j.1349-7006.2011.01894.x
Article CAS PubMed Google Scholar
Kagara N, Huynh KT, Kuo C, Okano H, Sim MS, Elashoff D, Chong K, Giuliano AE, Hoon DS (2012) Epigenetic regulation of cancer stem cell genes in triple-negative breast cancer. Am J Pathol 181(1):257–267. https://doi.org/10.1016/j.ajpath.2012.03.019
Article CAS PubMed Google Scholar
Cantile M, Collina F, D’Aiuto M, Rinaldo M, Pirozzi G, Borsellino C, Franco R, Botti G, Di Bonito M (2013) Nuclear localization of cancer stem cell marker CD133 in triple-negative breast cancer: a case report. Tumori 99(5):e245-250. https://doi.org/10.1177/030089161309900523
Nadal R, Ortega FG, Salido M, Lorente JA, Rodriguez-Rivera M, Delgado-Rodriguez M, Macia M, Fernandez A, Corominas JM, Garcia-Puche JL, Sanchez-Rovira P, Sole F, Serrano MJ (2013) CD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapy. Int J Cancer 133(10):2398–2407. https://doi.org/10.1002/ijc.28263
Article CAS PubMed Google Scholar
Patel A, Oshi M, Yan L, Matsuyama R, Endo I, Takabe K (2021) The unfolded protein response is associated with cancer proliferation and worse survival in hepatocellular carcinoma. Cancers. https://doi.org/10.3390/cancers13174443
Takeshita T, Yan L, Asaoka M, Rashid O, Takabe K (2019) Late recurrence of breast cancer is associated with pro-cancerous immune microenvironment in the primary tumor. Sci Rep 9(1):16942. https://doi.org/10.1038/s41598-019-53482-x
Article CAS PubMed Google Scholar
Ferrer A, Roser CT, El-Far MH, Savanur VH, Eljarrah A, Gergues M, Kra JA, Etchegaray JP, Rameshwar P (2020) Hypoxia-mediated changes in bone marrow microenvironment in breast cancer dormancy. Cancer Lett 488:9–17. https://doi.org/10.1016/j.canlet.2020.05.026
Article CAS PubMed Google Scholar
Oshi M, Tokumaru Y, Benesch MG, Sugito N, Wu R, Yan L, Yamada A, Chishima T, Ishikawa T, Endo I, Takabe K (2022) High miR-99b expression is associated with cell proliferation and worse patient outcomes in breast cancer. Am J Cancer Res 12(10):4840–4852
Wu R, Patel A, Tokumaru Y, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K (2022) High RAD51 gene expression is associated with aggressive biology and with poor survival in breast cancer. Breast Cancer Res Treat 193(1):49–63. https://doi.org/10.1007/s10549-022-06552-0
留言 (0)