Genomic and transcriptomic profiling of inflammatory breast cancer reveals distinct molecular characteristics to non-inflammatory breast cancers

Matro JM, Li T, Cristofanilli M et al (2015) Inflammatory breast cancer management in the national comprehensive cancer network: the disease, recurrence pattern, and outcome. Clin Breast Cancer 15:1–7. https://doi.org/10.1016/j.clbc.2014.05.005

Article  Google Scholar 

Hance KW, Anderson WF, Devesa SS et al (2005) Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the national cancer institute. J Natl Cancer Inst 97:966–975. https://doi.org/10.1093/jnci/dji172

Article  Google Scholar 

Menta A, Fouad TM, Lucci A et al (2018) inflammatory breast cancer: what to know about this unique, aggressive breast cancer. Surg Clin North Am 98:787–800. https://doi.org/10.1016/j.suc.2018.03.009

Article  Google Scholar 

Fouad TM, Barrera AMG, Reuben JM et al (2017) Inflammatory breast cancer: a proposed conceptual shift in the UICC–AJCC TNM staging system. Lancet Oncol 18:e228–e232. https://doi.org/10.1016/S1470-2045(17)30192-4

Article  Google Scholar 

Lim B, Woodward WA, Wang X et al (2018) Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer 18:485–499. https://doi.org/10.1038/s41568-018-0010-y

Article  CAS  Google Scholar 

Hirko KA, Rocque G, Reasor E et al (2022) The impact of race and ethnicity in breast cancer—disparities and implications for precision oncology. BMC Med 20:1–12. https://doi.org/10.1186/s12916-022-02260-0

Article  Google Scholar 

Ellington TD, Miller JW, Henley SJ et al (2022) Trends in breast cancer incidence, by race, ethnicity, and age among women aged ≥20 years—United States, 1999–2018. MMWR Morb Mortal Wkly Rep 71:43–47. https://doi.org/10.15585/mmwr.mm7102a2

Article  Google Scholar 

Iqbal J, Ginsburg O, Rochon PA et al (2015) Differences in breast cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the United States. JAMA—J Am Med Assoc 313:165–173. https://doi.org/10.1001/jama.2014.17322

Article  CAS  Google Scholar 

Shoemaker ML, White MC, Wu M et al (2018) Differences in breast cancer incidence among young women aged 20–49 years by stage and tumor characteristics, age, race, and ethnicity, 2004–2013. Breast Cancer Res Treat 169:595–606. https://doi.org/10.1007/s10549-018-4699-9

Article  Google Scholar 

Schinkel JK, Zahm SH, Jatoi I et al (2014) Racial/ethnic differences in breast cancer survival by inflammatory status and hormonal receptor status: an analysis of the surveillance, epidemiology, and end results data. Cancer Causes Control 25:959–968. https://doi.org/10.1007/s10552-014-0395-1

Article  Google Scholar 

Chen CH, Lu YS, Cheng AL et al (2020) Disparity in tumor immune microenvironment of breast cancer and prognostic impact: Asian versus western populations. Oncologist 25:e16–e23. https://doi.org/10.1634/theoncologist.2019-0123

Article  CAS  Google Scholar 

Ross JS, Ali SM, Wang K et al (2015) Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Res Treat 154:155–162. https://doi.org/10.1007/s10549-015-3592-z

Article  CAS  Google Scholar 

Matsuda N, Lim B, Wang Y et al (2017) Identification of frequent somatic mutations in inflammatory breast cancer. Breast Cancer Res Treat 163:263–272. https://doi.org/10.1007/s10549-017-4165-0

Article  CAS  Google Scholar 

Luo R, Chong W, Wei Q et al (2021) Whole-exome sequencing identifies somatic mutations and intratumor heterogeneity in inflammatory breast cancer. NPJ Breast Cancer. https://doi.org/10.1038/s41523-021-00278-w

Article  Google Scholar 

Li X, Kumar S, Harmanci A et al (2021) Whole-genome sequencing of phenotypically distinct inflammatory breast cancers reveals similar genomic alterations to non-inflammatory breast cancers. Genome Med 13:1–14. https://doi.org/10.1186/s13073-021-00879-x

Article  CAS  Google Scholar 

Van Laere S, Van Der Auwera I, Van Den Eynden G et al (2007) Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using affymetrix-based genome-wide gene expression analysis. Br J Cancer 97:1165–1174. https://doi.org/10.1038/sj.bjc.6603967

Article  CAS  Google Scholar 

Bièche I, Lerebours F, Tozlu S et al (2004) Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 10:6789–6795. https://doi.org/10.1158/1078-0432.CCR-04-0306

Article  Google Scholar 

Van Laere S, Van Der Auwera I, Van Den Eynden GG et al (2005) Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res Treat 93:237–246. https://doi.org/10.1007/s10549-005-5157-z

Article  CAS  Google Scholar 

Iwamoto T, Bianchini G, Qi Y et al (2011) Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 125:785–795. https://doi.org/10.1007/s10549-010-1280-6

Article  CAS  Google Scholar 

Nguyen DM, Sam K, Tsimelzon A et al (2006) Molecular heterogeneity of inflammatory breast cancer: a hyperproliferative phenotype. Clin Cancer Res 12:5047–5054. https://doi.org/10.1158/1078-0432.CCR-05-2248

Article  CAS  Google Scholar 

Lv Q, Liu Y, Huang H et al (2020) Identification of potential key genes and pathways for inflammatory breast cancer based on GEO and TCGA databases. Onco Targets Ther 13:5541–5550. https://doi.org/10.2147/OTT.S255300

Article  CAS  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Article  CAS  Google Scholar 

Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 00:1–3

Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:1–4. https://doi.org/10.1093/gigascience/giab008

Article  CAS  Google Scholar 

McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

Article  CAS  Google Scholar 

McLaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0974-4

Article  CAS  Google Scholar 

Mayakonda A, Lin DC, Assenov Y et al (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756. https://doi.org/10.1101/gr.239244.118

Article  CAS  Google Scholar 

Niu B, Ye K, Zhang Q et al (2014) MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30:1015–1016. https://doi.org/10.1093/bioinformatics/btt755

Article  CAS  Google Scholar 

Wang S, Li H, Song M et al (2021) Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes. PLoS Genet. https://doi.org/10.1371/journal.pgen.1009557

Article  Google Scholar 

Rosenthal R, McGranahan N, Herrero J et al (2016) DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol 17:1–11. https://doi.org/10.1186/s13059-016-0893-4

Article  CAS  Google Scholar 

Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075

Article  CAS  Google Scholar 

Sztupinszki Z, Diossy M, Krzystanek M et al (2018) Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer. NPJ Breast Cancer 4:8–11. https://doi.org/10.1038/s41523-018-0066-6

Article  CAS  Google Scholar 

Favero F, Joshi T, Marquard AM et al (2015) Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann Oncol 26:64–70. https://doi.org/10.1093/annonc/mdu479

Article  CAS  Google Scholar 

Chen X, Schulz-Trieglaff O, Shaw R et al (2016) Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32:1220–1222. https://doi.org/10.1093/bioinformatics/btv710

Article  CAS  Google Scholar 

Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4

Article  CAS  Google Sc

留言 (0)

沒有登入
gif