Multi-stage and multi-colour liquid crystal reflections using a chiral triptycene photoswitchable dopant

Li, Q. Intelligent Stimuli-Responsive Materials: from Well-Defined Nanostructures to Applications (Wiley, 2013).

Book  Google Scholar 

Goulet‐Hanssens, A., Eisenreich, F. & Hecht, S. Enlightening materials with photoswitches. Adv. Mater. 32, 1905966 (2020).

Article  Google Scholar 

Wang, Y. & Li, Q. Light‐driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012).

Article  CAS  PubMed  Google Scholar 

Kim, Y. & Tamaoki, N. Photoresponsive chiral dopants: light-driven helicity manipulation in cholesteric liquid crystals for optical and mechanical functions. ChemPhotoChem. 3, 284–303 (2019).

Article  CAS  Google Scholar 

Zheng, Z. et al.Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 531, 352–356 (2016).

Article  PubMed  Google Scholar 

Bisoyi, H. K. & Li, Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116, 15089–15166 (2016).

Article  CAS  PubMed  Google Scholar 

Bisoyi, H. K. & Li, Q. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122, 4887–4926 (2021).

Article  PubMed  Google Scholar 

Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

Article  CAS  Google Scholar 

Chilaya, G. S. Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers. Crystallogr. Rep. 51, S108–S118 (2006).

Article  CAS  Google Scholar 

Palffy-Muhoray, P. Liquid crystals new designs in cholesteric colour. Nature 391, 745–746 (1998).

Article  CAS  Google Scholar 

Sagisaka, T. & Yokoyama, Y. Reversible control of the pitch of cholesteric liquid crystals by photochromism of chiral fulgide derivatives. Bull. Chem. Soc. Jpn 73, 191–196 (2000).

Article  CAS  Google Scholar 

Janicki, S. Z. & Schuster, G. B. A liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger. J. Am. Chem. Soc. 117, 8524–8527 (1995).

Article  CAS  Google Scholar 

White, T. J. et al. Optically reconfigurable color change in chiral nematic liquid crystals based on indolylfulgide chiral dopants. J. Mater. Chem. 22, 5751–5757 (2012).

Article  CAS  Google Scholar 

Kurosaki, Y., Sagisaka, T., Matsushima, T., Ubukata, T. & Yokoyama, Y. Chiral, thermally irreversible and quasi‐stealth photochromic dopant to control selective reflection wavelength of cholesteric liquid crystal. ChemPhysChem 21, 1375–1383 (2020).

Article  CAS  PubMed  Google Scholar 

Bosco, A. et al. Photoinduced reorganization of motor-doped chiral liquid crystals: bridging molecular isomerization and texture rotation. J. Am. Chem. Soc. 130, 14615–14624 (2008).

Article  CAS  PubMed  Google Scholar 

Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

Article  CAS  PubMed  Google Scholar 

van Delden, R. A., Koumura, N., Harada, N. & Feringa, B. L. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

Article  PubMed  PubMed Central  Google Scholar 

Ryabchun, A. et al. Helix inversion controlled by molecular motors in multistate liquid crystals. Adv. Mater. 32, 2004420 (2020).

Article  Google Scholar 

Hou, J. et al. Photo-responsive helical motion by light-driven molecular motors in a liquid-crystal network. Angew. Chem. Int. Ed. 60, 8251–8257 (2021).

Article  CAS  Google Scholar 

Bandara, H. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

Article  CAS  PubMed  Google Scholar 

Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

Article  CAS  PubMed  Google Scholar 

Li, Y., Urbas, A. & Li, Q. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. J. Am. Chem. Soc. 134, 9573–9576 (2012).

Article  CAS  PubMed  Google Scholar 

Li, Y., Xue, C., Wang, M., Urbas, A. & Li, Q. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self‐organized helical superstructures. Angew. Chem. Int. Ed. 52, 13703–13707 (2013).

Article  CAS  Google Scholar 

Li, Y., Wang, M., Wang, H., Urbas, A. & Li, Q. Rationally designed axially chiral diarylethene switches with high helical twisting power. Chem. Eur. J. 20, 16286–16292 (2014).

Article  CAS  PubMed  Google Scholar 

Denekamp, C. & Feringa, B. L. Optically active diarylethenes for multimode photoswitching between liquid–crystalline phases. Adv. Mater. 10, 1080–1082 (1998).

Article  CAS  Google Scholar 

Uchida, K., Kawai, Y., Shimizu, Y., Vill, V. & Irie, M. An optically active diarylethene having cholesterol units: a dopant for photoswitching of liquid crystal phases. Chem. Lett. 29, 654–655 (2000).

Article  Google Scholar 

Yamaguchi, T., Inagawa, T., Nakazumi, H., Irie, S. & Irie, M. Photoswitching of helical twisting power of a chiral diarylethene dopant: pitch change in a chiral nematic liquid crystal. Chem. Mater. 12, 869–871 (2000).

Article  CAS  Google Scholar 

van Leeuwen, T. et al. Photoinduced pitch changes in chiral nematic liquid crystals formed by doping with chiral diarylethene. J. Mater. Chem. 21, 3142–3246 (2011).

Google Scholar 

Li, Y., Urbas, A. & Li, Q. Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality. J. Org. Chem. 76, 7148–7156 (2011).

Article  CAS  PubMed  Google Scholar 

Zheng, Z. et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nat. Photonics 16, 226–234 (2022).

Article  CAS  Google Scholar 

Shao, B. & Aprahamian, I. Hydrazones as new molecular tools. Chem 6, 2162–2173 (2020).

Article  CAS  Google Scholar 

Qian, H., Pramanik, S. & Aprahamian, I. Photochromic hydrazone switches with extremely long thermal half-lives. J. Am. Chem. Soc. 139, 9140–9143 (2017).

Article  CAS  PubMed  Google Scholar 

Shao, B., Qian, H., Li, Q. & Aprahamian, I. Structure property analysis of the solution and solid-state properties of bistable photochromic hydrazones. J. Am. Chem. Soc. 141, 8364–8371 (2019).

Article  CAS  PubMed  Google Scholar 

Moran, M. J., Magrini, M., Walba, D. M. & Aprahamian, I. Driving a liquid crystal phase transition using a photochromic hydrazone. J. Am. Chem. Soc. 140, 13623–13627 (2018).

Article  CAS  PubMed  Google Scholar 

Shin, S. et al. Tuning helical twisting power of isosorbide-based chiral dopants by chemical modifications. Mol. Cryst. Liq. Cryst. 534, 19–31 (2011).

Article  CAS  Google Scholar 

Khan, M. N. & Wirth, T. Chiral triptycenes: concepts, progress and prospects. Chem. Eur. J. 27, 7059–7068 (2021).

Article  CAS  PubMed  Google Scholar 

Norvez,

留言 (0)

沒有登入
gif