Cobalt-catalysed desymmetrization of malononitriles via enantioselective borohydride reduction

Strittmatter, H., Hildbrand, S. & Pollak, P. in Ullmann’s Encyclopedia of Industrial Chemistry 22, 157–171 (Wiley-VCH, 2012).

Freeman, F. Chemistry of malononitrile. Chem. Rev. 69, 591–624 (1969).

Article  CAS  PubMed  Google Scholar 

Fatiadi, A. J. New applications of malononitrile in organic chemistry—part I. Synthesis https://doi.org/10.1055/s-1978-24703 (1978).

Fatiadi, A. J. New applications of malononitrile in organic chemistry—part II. Synthesis https://doi.org/10.1055/s-1978-24720 (1978).

Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

Article  CAS  PubMed  Google Scholar 

Wada, A., Noguchi, K., Hirano, M. & Tanaka, K. Enantioselective synthesis of C2-symmetric spirobipyridine ligands through cationic Rh(I)/modified-binap-catalyzed double [2+2+2] cycloaddition. Org. Lett. 9, 1295–1298 (2007).

Article  CAS  PubMed  Google Scholar 

Lu, Z. et al. Enantioselective assembly of cycloenones with a nitrile-containing all-carbon quaternary center from malononitriles enabled by Ni catalysis. J. Am. Chem. Soc. 142, 7328–7333 (2020).

Article  CAS  PubMed  Google Scholar 

Cai, J. et al. Ni-catalyzed enantioselective [2+2+2] cycloaddition of malononitriles with alkyne. Chem 7, 799–811 (2021).

Article  CAS  Google Scholar 

Li, K. et al. Enantioselective synthesis of pyridines with all-carbon quaternary carbon centers via cobalt-catalyzed desymmetric [2+2+2] cycloaddition. Angew. Chem. Int. Ed. 60, 20204–20209 (2021).

Article  CAS  Google Scholar 

Hu, X.-D. et al. Enantioselective synthesis of α-all-carbon quaternary center-containing carbazolones via amino-palladation/desymmetrizing nitrile addition cascade. J. Am. Chem. Soc. 143, 3734–3740 (2021).

Article  CAS  PubMed  Google Scholar 

Chen, Z.-H. et al. Enantioselective nickel-catalyzed reductive aryl/alkenyl-cyano cyclization coupling to all-carbon quaternary stereocenters. J. Am. Chem. Soc. 144, 4776–4782 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, M.-X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res. 48, 602–611 (2015).

Article  CAS  PubMed  Google Scholar 

Ao, Y., Wang, Q. & Wang, D. Biocatalytic desymmetrization of dinitriles in organic synthesis. Chin. J. Org. Chem. 36, 2333–2343 (2016).

Article  CAS  Google Scholar 

Kamezaki, S., Akiyama, S., Kayaki, Y., Kuwata, S. & Ikariya, T. Asymmetric nitrile-hydration with bifunctional ruthenium catalysts bearing chiral N-sulfonyldiamine ligands. Tetrahedron Asymmetry 21, 1169–1172 (2010).

Article  CAS  Google Scholar 

Tanaka, K., Suzuki, N. & Nishida, G. Cationic rhodium(I)/modified-BINAP catalyzed [2+2+2] cycloaddition of alkynes with nitriles. Eur. J. Org. Chem. https://doi.org/10.1002/ejoc.200600347 (2006).

Shibasaki, M. & Kanai, M. Asymmetric synthesis of tertiary alcohols and α-tertiary amines via Cu-catalyzed C−C bond formation to ketones and ketimines. Chem. Rev. 108, 2853–2873 (2008).

Article  CAS  PubMed  Google Scholar 

Xu, P., Shen, C., Xu, A., Low, K.-H. & Huang, Z. Desymmetric cyanosilylation of acyclic 1,3-diketones. Angew. Chem. Int. Ed. 61, e20220844 (2022).

Google Scholar 

Xu, P. & Huang, Z. Catalytic reductive desymmetrization of malonic esters. Nat. Chem. 13, 634–642 (2021).

Article  CAS  PubMed  Google Scholar 

Petersen, K. S. Nonenzymatic enantioselective synthesis of all-carbon quaternary centers through desymmetrization. Tetrahedron Lett. 56, 6523–6535 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nájera, C., Foubelo, F., Sansano, J. M. & Yus, M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 106107, 132629 (2022).

Article  Google Scholar 

Farona, M. F. & Kraus, K. F. Coordination of organonitriles through CN π systems. Inorg. Chem. 9, 1700–1704 (1970).

Article  CAS  Google Scholar 

Storhoff, B. N. & Lewis, H. C. Jr. Organonitrile complexes of transition metals. Coord. Chem. Rev. 23, 1–29 (1977).

Article  CAS  Google Scholar 

Gill, M. S., Ahuja, H. S. & Rao, G. S. Complexes of niobium(V) and tantalum(V) halides with dinitriles. I. Malononitrile and succinonitrile. Inorg. Chim. Acta 7, 359–364 (1973).

Article  CAS  Google Scholar 

Pellissier, H. & Clavier, H. Enantioselective cobalt-catalyzed transformations. Chem. Rev. 114, 2775–2823 (2014).

Article  CAS  PubMed  Google Scholar 

Nagata, T., Yorozu, K., Yamada, T. & Mukaiyama, T. Enantioselective reduction of ketones with sodium borohydride, catalyzed by optically active (β-oxoaldiminato)cobalt(II) complexes. Angew. Chem. Int. Ed. 34, 2145–2147 (1995).

Article  CAS  Google Scholar 

Yamada, T., Ohtsuka, Y. & Ikeno, T. Enantioselective borohydride 1,4-reduction of α,β-unsaturated carboxamides using optically active cobalt(II) complex catalysts. Chem. Lett. 27, 1129–1130 (1998).

Article  Google Scholar 

Ohtsuka, Y., Koyasu, K., Ikeno, T. & Yamada, T. Reductive desymmetrization of 2-alkyl-1,3-diketones catalyzed by optically active β-ketoiminato cobalt complexes. Org. Lett. 3, 2543–2546 (2001).

Article  CAS  PubMed  Google Scholar 

Yamada, T. et al. Enantioselective borohydride reduction catalyzed by optically active cobalt complexes. Chem. Eur. J. 9, 4485–4509 (2003).

Article  CAS  PubMed  Google Scholar 

Leutenegger, U., Madin, A. & Pfaltz, A. Enantioselective reduction of α,β-unsaturated carboxylates with NaBH4 and catalytic amounts of chiral cobalt semicorrin complexes. Angew. Chem. Int. Ed. 28, 60–61 (1989).

Article  Google Scholar 

Liu, C. et al. Enantioselective synthesis of 3a-amino-pyrroloindolines by copper-catalyzed direct asymmetric dearomative amination of tryptamines. Angew. Chem. Int. Ed. 55, 751–754 (2016).

Article  CAS  Google Scholar 

Sugi, K. D., Nagata, T., Yamada, T. & Mukaiyama, T. Practical and efficient enantioselective borohydride reduction of aromatic ketones catalyzed by optically active cobalt(II) complexes using pre-modified borohydride. Chem. Lett. 25, 1081–1082 (1996).

Article  Google Scholar 

Ai, W., Zhong, R., Liu, X. & Liu, Q. Hydride transfer reactions catalyzed by cobalt complexes. Chem. Rev. 119, 2876–2953 (2019).

Article  CAS  PubMed  Google Scholar 

Semproni, S. P., Milsmann, C. & Chirik, P. J. Four-coordinate cobalt pincer complexes: electronic structure studies and ligand modification by homolytic and heterolytic pathways. J. Am. Chem. Soc. 136, 9211–9224 (2014).

Article  CAS  PubMed  Google Scholar 

Duan, Y.-N. et al. Homogeneous hydrogenation with a cobalt/tetraphosphine catalyst: a superior hydride donor for polar double bonds and N-heteroarenes. J. Am. Chem. Soc. 141, 20424–20433 (2019).

Article  CAS  PubMed  Google Scholar 

Hu, Y., Zhang, Z., Liu, Y. & Zhang, W. Cobalt-catalyzed chemo- and enantioselective hydrogenation of conjugated enynes. Angew. Chem. Int. Ed. 60, 16989–16993 (2021).

Article  CAS  Google Scholar 

Chirik, P. J. Iron- and cobalt-catalyzed alkene hydrogenation: catalysis with both redox-active and strong field ligands. Acc. Chem. Res. 48, 1687–1695 (2015).

Article  CAS  PubMed  Google Scholar 

Nakao, Y. Metal-mediated C–CN bond activation in organic synthesis. Chem. Rev. 121, 327–344 (2021).

Article  CAS 

留言 (0)

沒有登入
gif