Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803–20.
Van Meir EG, Hadjipanayis CG, Norden AD, Shu H-K, Wen PY. Olson: exciting new advances in Neuro-Oncology The Avenue to a cure for malignant glioma. Ca-a Cancer J Clin. 2010;60:166–93.
Theeler BJ. M. R. Gilbert: advances in the treatment of newly diagnosed glioblastoma. BMC Med 13:2015.
Aum DJ, Kim DH, Beaumont TL, Leuthardt EC, Dunn GP, Kim AH. Molecular and cellular heterogeneity: the hallmark of glioblastoma. NeuroSurg Focus. 37:2014.
Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–.
Article CAS PubMed PubMed Central Google Scholar
Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed Death-1. Clin Cancer Res. 2012;18:6580–7.
Article CAS PubMed Google Scholar
Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen LP, Meyermann R, Weller M, Wiendl H. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 2003;63:7462–7.
Jalili-Nik M, Soltani A, Mashkani B, Rafatpanah H, Hashemy SI. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell Leukemia/Lymphoma. Int Immunopharmacol. 98:2021.
Nakamura T, Sato T, Endo R, Sasaki S, Takahashi N, Sato Y, Hyodo M, Hayakawa Y, Harashima H. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer. 9:2021.
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol 13:2022.
Sanmamed MF, Chen LP. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalizationvol 175, pg 313, (2018). Cell. 176:677–677. 2019.
Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH, Lao CD. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84.
Article CAS PubMed Google Scholar
Taube JM, Klein A, Brahmer JR, Xu HY, Pan XY, Kim JH, Chen LP, Pardoll DM, Topalian SL, Anders RA. Association of PD-1, PD-1 ligands, and other features of the Tumor Immune Microenvironment with response to Anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.
Article CAS PubMed PubMed Central Google Scholar
Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, Berry S, Chartash EK, Daud A, Fling SP. PD-1 blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N Engl J Med. 2016;374:2542–52.
Article CAS PubMed PubMed Central Google Scholar
Gettinger S, Herbst RS. B7-H1/PD-1 blockade therapy in Non-small Cell Lung Cancer < i > current status and future direction. Cancer J. 2014;20:281–9.
Article CAS PubMed Google Scholar
Heimberger A, Garber S, Hashimoto Y, Weathers S-P, Xiu J, Gatalica Z, Verhaak R, Zhou S, Fuller G, Khasraw M. IMMUNE CHECKPOINT BLOCKADE AS A POTENTIAL THERAPEUTIC TARGET: SURVEYING CNS MALIGNANCIES. Neurooncology. 2016;18:41–41.
Wang Z, Zhang C, Liu X, Wang Z, Sun L, Li G, Liang J, Hu H, Liu Y, Zhang W. Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma. OncoImmunology. 5:2016.
Yao Y, Tao R, Wang XM, Wang Y, Mao Y, Zhou LF. B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells. Neurooncology. 2009;11:757–66.
Yu W, Shao A, Ren X, Chen Z, Xu J, Wei Q. Comparison of Immune Checkpoint molecules < i > PD-1 and < i > PD-L1 in Paired Primary and recurrent glioma: increasing Trend when recurrence. Brain Sci. 12:2022.
Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84–8.
Article CAS PubMed Google Scholar
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 14:2021.
Lamano JB, Lamano JB, Li YD, DiDomenico JD, Choy W, Veliceasa D, Oyon DE, Fakurnejad S, Ampie L, Kesavabhotla K. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes Tumor Growth. Clin Cancer Res. 2019;25:3643–57.
Article CAS PubMed PubMed Central Google Scholar
Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S. PD-L1 is a novel direct target of HIF-1α., and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211:781–90.
Article CAS PubMed PubMed Central Google Scholar
Ding XC, Wang LL, Zhang XD, Xu JL, Li PF, Liang H, Zhang XB, Xie L, Zhou ZH, Yang J. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J Hematol Oncol. 2021;14:5.
Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19:20–7.
Article CAS PubMed PubMed Central Google Scholar
Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neurooncology. 2012;14:958–78.
Locarno CV, Simonelli M, Carenza C, Capucetti A, Stanzani E, Lorenzi E, Persico P, Della Bella S, Passoni L. D. Mavilio: Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology. 225:2020.
Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, Gao M. PD-L1-Mediated immunosuppression in Glioblastoma is Associated with the infiltration and M2-Polarization of Tumor-Associated macrophages. Front Immunol. 11:2020.
Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B, Buttar C, Li E, Sundberg B, Salas RD. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol. 2020;21:442–.
Article CAS PubMed Google Scholar
Hofmeyer KA, Jeon H, Zang X. The PD-1/PD-L1 (B7-H1) pathway in chronic infection-Induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol. 11:2011.
Su L, Guo W, Lou L, Nie S, Zhang Q, Liu Y, Chang Y, Zhang X, Li Y, Shen H. EGFR-ERK pathway regulates CSN6 to contribute to PD-L1 expression in glioblastoma. Mol Carcinog. 2020;59:520–32.
Article CAS PubMed Google Scholar
Goods BA, Hernandez AL, Lowther DE, Lucca LE, Lerner BA, Gunel M, Raddassi K, Coric V, Hafler DA, Love JC. Functional differences between PD-1+ and PD-1− CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme. PLoS ONE. 12:2017.
Vimalathas G, Kristensen BW. Expression, prognostic significance and therapeutic implications of PD-L1 in gliomas. Neuropathol Appl Neurobiol. 48:2022.
Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunotherapy. 2005;54:307–14.
Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N, Fuller GN. Incidence and prognostic impact of FoxP3 < SUP>+ regulatory T cells in human gliomas. Clin Cancer Res. 2008;14:5166–72.
Article CAS PubMed Google Scholar
DiDomenico J, Lamano JB, Oyon D, Li Y, Veliceasa D, Kaur G, Ampie L, Choy W, Lamano JB. O. Bloch: the immune checkpoint protein PD-L1 induces and maintains regulatory T cells in glioblastoma. Oncoimmunology. 7:2018.
Han S, Feng S, Ren M, Ma E, Wang X, Xu L, Xu M. Glioma cell-derived placental growth factor induces regulatory B cells. Int J Biochem Cell Biol. 2014;57:63–8.
Article CAS PubMed Google Scholar
Lee-Chang C, Rashidi A, Miska J, Zhang P, Pituch KC, Hou D, Xiao T, Fischietti M, Kang SJ. Appin: myeloid-derived suppressive cells promote B cell-mediated immunosuppression via transfer of PD-L1 in Glioblastoma. Cancer Immunol Res. 2019;7:1928–43.
Article CAS PubMed PubMed Central Google Scholar
Shu C, Li QG. Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma. Crit Rev Oncol Hematol. 2020;151:14.
Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol. 2003;74:186–96.
Article CAS PubMed Google Scholar
Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, Borrello I, Kato M, Schadendorf D, Baniyash M. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA. 2011;108:17111–6.
Article CAS PubMed PubMed Central Google Scholar
Gielen PR, Schulte BM, Kers-Rebel ED, Verrijp K, Petersen-Baltussen HMJM, ter Laan M, Wesseling P, Adema GJ. Increase in both CD14-Positive and CD15-Positive myeloid-derived suppressor cell subpopulations in the blood of patients with Glioma but Predominance of CD15-Positive myeloid-derived suppressor cells in Glioma tissue. J Neuropathol Exp Neurol. 2015;74:390–400.
Article CAS PubMed Google Scholar
Dubinski D, Woelfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM. CD4 < SUP>+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neurooncology. 2016;18:807–18.
留言 (0)