Targeting Toll-like Receptor 4/Nuclear Factor-κB and Nrf2/Heme Oxygenase-1 Crosstalk via Trimetazidine Alleviates Lipopolysaccharide-Induced Depressive-like Behaviors in Mice

Abdel Rasheed NO, El Sayed NS, El-Khatib AS (2018) Targeting central β2 receptors ameliorates streptozotocin-induced neuroinflammation via inhibition of glycogen synthase kinase3 pathway in mice. Prog Neuropsychopharmacol Biol Psychiatry 86:65–75. https://doi.org/10.1016/j.pnpbp.2018.05.010

Article  PubMed  CAS  Google Scholar 

Abdel Rasheed NO, Shiha NA, Mohamed SS, Ibrahim WW (2023) SIRT1/PARP-1/NLRP3 cascade as a potential target for niacin neuroprotective effect in lipopolysaccharide-induced depressive-like behavior in mice. Int Immunopharmacol 123:110720. https://doi.org/10.1016/j.intimp.2023.110720

Article  PubMed  CAS  Google Scholar 

Abdel-Salam OME, Mohammed NA, Sleem AA (2011) The effects of trimetazidine on lipopolysaccharide-induced oxidative stress in mice. EXCLI J 10:162–172

PubMed  PubMed Central  Google Scholar 

Abou El-Ezz D, Maher A, Sallam N, El-Brairy A, Kenawy S (2018) Trans-cinnamaldehyde Modulates Hippocampal Nrf2 Factor and Inhibits Amyloid Beta Aggregation in LPS-Induced Neuroinflammation Mouse Model. Neurochem Res 43:2333–2342. https://doi.org/10.1007/s11064-018-2656-y

Article  PubMed  CAS  Google Scholar 

Afridi R, Suk K (2021) Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci 15:691067. https://doi.org/10.3389/fncel.2021.691067

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahmad S, Shah SA, Khan N, Nishan U, Jamila N, Alotaibi A (2023) A phytoconstituent 6-aminoflavone ameliorates lipopolysaccharide-induced oxidative stress mediated synapse and memory dysfunction via p-Akt/NF-kB pathway in albino mice. Open Chem 21(1):20220336

Article  CAS  Google Scholar 

Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511

Article  PubMed  PubMed Central  CAS  Google Scholar 

Atilgan D, Parlaktas BS, Uluocak N, Erdemir F, Markoc F, Saylan O, Erkorkmaz U (2014) The effects of trimetazidine and sildenafil on bilateral cavernosal nerve injury induced oxidative damage and cavernosal fibrosis in rats. Sci World J 1:970363. https://doi.org/10.1155/2014/970363

Article  Google Scholar 

Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H (2020) Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation 17:166. https://doi.org/10.1186/s12974-020-01836-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bortolasci CC, Kidnapillai S, Spolding B, Truong TTT, Connor T, Swinton C, Panizzutti B, Liu ZSJ, Sanigorski A, Dean OM, Crowley T, Richardson M, Bozaoglu K, Vlahos K, Cowdery S, Watmuff B, Steyn SF, Wolmarans DW, Engelbrecht BJ, Perry C, Drummond K, Pang T, Jamain S, Gray L, McGee SL, Harvey BH, Kim JH, Leboyer M, Berk M, Walder K (2023) Use of a gene expression signature to identify trimetazidine for repurposing to treat bipolar depression. Bipolar Disord 25(8):661–70. https://doi.org/10.1111/bdi.13319

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chai H, Liu B, Zhan H, Li X, He Z, Ye J, Guo Q, Chen J, Zhang J, Li S (2019) Antidepressant Effects of Rhodomyrtone in Mice with Chronic Unpredictable Mild Stress-Induced Depression. Int J Neuropsychopharmacol 22:157–164. https://doi.org/10.1093/ijnp/pyy091

Article  PubMed  CAS  Google Scholar 

Ciesielska A, Matyjek M, Kwiatkowska K (2021) TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 78:1233–1261. https://doi.org/10.1007/s00018-020-03656-y

Article  PubMed  CAS  Google Scholar 

Correia AS, Vale N (2024) Advancements Exploring Major Depressive Disorder: Insights on Oxidative Stress, Serotonin Metabolism, BDNF, HPA Axis Dysfunction, and Pharmacotherapy Advances. International J Transl Med 4:176–196. https://doi.org/10.3390/ijtm4010010

Article  Google Scholar 

Correia AS, Cardoso A, Vale N (2023) Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin. Neurogenesis and Synaptic Plasticity. Antioxidants (Basel) 12:470. https://doi.org/10.3390/antiox12020470

Article  PubMed  CAS  Google Scholar 

C.F.A. Culling, Handbook of Histopathological and Histochemical Techniques: Including Museum Techniques, Butterworth-Heinemann, 2013.

Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412

Article  PubMed  PubMed Central  Google Scholar 

Dézsi CA (2016) Trimetazidine in Practice: Review of the Clinical and Experimental Evidence. Am J Ther 23:e871–e879. https://doi.org/10.1097/MJT.0000000000000180

Article  PubMed  PubMed Central  Google Scholar 

Dhote V, Balaraman R (2008) Anti-oxidant activity mediated neuroprotective potential of trimetazidine on focal cerebral ischaemia-reperfusion injury in rats. Clin Exp Pharmacol Physiol 35:630–637. https://doi.org/10.1111/j.1440-1681.2008.04845.x

Article  PubMed  CAS  Google Scholar 

Engin S, Barut EN, Yaşar YK, Soysal AÇ, Arıcı T, Kerimoğlu G, Kadıoğlu M, Sezen SF (2022) Trimetazidine attenuates cyclophosphamide-induced cystitis by inhibiting TLR4-mediated NFκB signaling in mice. Life Sci 301:120590. https://doi.org/10.1016/j.lfs.2022.120590

Article  PubMed  CAS  Google Scholar 

Evrensel A, Ünsalver BÖ, Ceylan ME (2020) Neuroinflammation, Gut-Brain Axis and Depression. Psychiatry Investig 17:2–8. https://doi.org/10.30773/pi.2019.08.09

Article  PubMed  CAS  Google Scholar 

Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J (2023) Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 14:1193053. https://doi.org/10.3389/fimmu.2023.1193053

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fries GR, Saldana VA, Finnstein J, Rein T (2023) Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 28:284–297. https://doi.org/10.1038/s41380-022-01806-1

Article  PubMed  CAS  Google Scholar 

Gad HA, Mansour M, Abbas H, Malatani RT, Khattab MA, Elmowafy E (2022) “Plurol will not miss the boat”: A new manifesto of galantamine conveyance. J Drug Deliv Sci Technol 74:103516. https://doi.org/10.1016/j.jddst.2022.103516

Article  CAS  Google Scholar 

Gastfriend BD, Palecek SP, Shusta EV (2018) Modeling the blood-brain barrier: Beyond the endothelial cells. Curr Opin Biomed Eng 5:6–12. https://doi.org/10.1016/j.cobme.2017.11.002

Article  PubMed  PubMed Central  Google Scholar 

Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709. https://doi.org/10.1038/mp.2016.3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gong X, Hu H, Qiao Y, Xu P, Yang M, Dang R, Han W, Guo Y, Chen D, Jiang P (2019) The Involvement of Renin-Angiotensin System in Lipopolysaccharide-Induced Behavioral Changes, Neuroinflammation, and Disturbed Insulin Signaling. Front Pharmacol 10:318. https://doi.org/10.3389/fphar.2019.00318

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hu Y, Wang Z, Pan S, Zhang H, Fang M, Jiang H, Zhang H, Gao Z, K, Xu, Z, Li (2017) Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/NF-КB signaling pathway after LPS treatment in neonatal rats. Oncotarget 8(19):31638

Huang X, Hussain B, Chang J (2021) Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 27:36–47. https://doi.org/10.1111/cns.13569

Article  PubMed  CAS  Google Scholar 

Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM (2019) Escitalopram Ameliorates Cognitive Impairment in D-Galactose-Injected Ovariectomized Rats: Modulation of JNK, GSK-3β, and ERK Signalling Pathways. Sci Rep 9:10056. https://doi.org/10.1038/s41598-019-46558-1

Article 

留言 (0)

沒有登入
gif