Harnessing the benefits of physical exercise-induced melatonin: a potential promising approach to combat Alzheimer’s disease by targeting beta-amyloid (Aβ)

Nous A, Engelborghs S, Smolders I (2021) Melatonin levels in the Alzheimer’s disease continuum: a systematic review. Alzheimers Res Ther 13(1):1–12. https://doi.org/10.1186/s13195-021-00788-6

Article  Google Scholar 

Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67–72. https://doi.org/10.1038/nrn2967

Article  CAS  Google Scholar 

Mustapic M, Popovic Hadzija M, Pavlovic M, Pavkovic P, Presecki P, Mrazovac D et al (2012) Alzheimer’s disease and type 2 diabetes: the association study of polymorphisms in tumor necrosis factor-alpha and apolipoprotein E genes. Metab Brain Dis 27:507–512. https://doi.org/10.1007/s11011-012-9310-1

Article  PubMed  CAS  Google Scholar 

Leszek J, Sochocka M, Gąsiorowski K (2012) Vascular factors and epigenetic modifications in the pathogenesis of Alzheimer’s disease. J Neurol Sci 323(1–2):25–32. https://doi.org/10.1016/j.jns.2012.09.010

Article  PubMed  CAS  Google Scholar 

Rocchi A, Valensin D, Aldinucci C, Giani G, Barbucci R, Gaggelli E et al (2012) NMR metabolomic investigation of astrocytes interacted with Aβ42 or its complexes with either copper (II) or zinc (II). J Inorg Biochem 117:326–333. https://doi.org/10.1016/j.jinorgbio.2012.08.021

Article  PubMed  CAS  Google Scholar 

Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis 19(1):341–353. https://doi.org/10.3233/JAD-2010-1222

Article  PubMed  CAS  Google Scholar 

Lourida I, Hannon E, Littlejohns TJ, Langa KM, Hyppönen E, Kuźma E et al (2019) Association of lifestyle and genetic risk with incidence of dementia. JAMA 322(5):430–437. https://doi.org/10.1001/jama.2019.9879

Article  PubMed  PubMed Central  Google Scholar 

Rosenberg A, Ngandu T, Rusanen M, Antikainen R, Bäckman L, Havulinna S et al (2018) Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: the FINGER trial. Alzheimers Dement 14(3):263–270. https://doi.org/10.1016/j.jalz.2017.09.006

Article  PubMed  Google Scholar 

Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385(9984):2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5

Article  PubMed  Google Scholar 

Bennett D, Schneider J, Arvanitakis Z, Kelly J, Aggarwal N, Shah R et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844. https://doi.org/10.1212/01.wnl.0000219668.47116.e6

Article  PubMed  CAS  Google Scholar 

Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D et al (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

Article  PubMed  Google Scholar 

Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M et al (2022) Can exercise training teach us how to treat Alzheimer’s disease? Ageing Res Rev 75:101559. https://doi.org/10.1016/j.arr.2022.101559

Article  PubMed  CAS  Google Scholar 

Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13(8):788–794. https://doi.org/10.1016/S1474-4422(14)70136-X

Article  PubMed  Google Scholar 

Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S et al (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396(10248):413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

Article  PubMed  PubMed Central  Google Scholar 

Tse AC, Lee PH, Zhang J, Chan RC, Ho AW, Lai EW (2022) Effects of exercise on sleep, melatonin level, and behavioral functioning in children with autism. Autism 26(7):1712–1722. https://doi.org/10.1177/13623613211062952

Article  PubMed  Google Scholar 

Pobocik K, Rentzell S, Leonard A, Daye A, Evans E (2020) Influence of aerobic exercise on sleep and salivary melatonin in men. Int J Sports Exerc Med 6:161–167. https://doi.org/10.23937/2469-5718/1510161

Google Scholar 

Wu Y-H, Feenstra MG, Zhou J-N, Liu R-Y, Toranõ JS, Van Kan HJ et al (2003) Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab 88(12):5898–5906. https://doi.org/10.1210/jc.2003-030833

Article  PubMed  CAS  Google Scholar 

Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38(3):145–152. https://doi.org/10.1111/j.1600-079X.2004.00196.x

Article  PubMed  CAS  Google Scholar 

Ferrari E, Arcaini A, Gornati R, Pelanconi L, Cravello L, Fioravanti M et al (2000) Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol 35(9–10):1239–1250. https://doi.org/10.1016/S0531-5565(00)00160-1

Article  PubMed  CAS  Google Scholar 

Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF (2003) Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35(2):125–130. https://doi.org/10.1034/j.1600-079X.2003.00065.x

Article  PubMed  CAS  Google Scholar 

Lin L, Huang Q-X, Yang S-S, Chu J, Wang J-Z, Tian Q (2013) Melatonin in Alzheimer’s disease. Int J Mol Sci 14(7):14575–14593. https://doi.org/10.3390/ijms140714575

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vincent B (2018) Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: a critical review. Pharmacol Res 134:223–237. https://doi.org/10.1016/j.phrs.2018.06.011

Article  PubMed  CAS  Google Scholar 

Meng Q, Lin M-S, Tzeng I-S (2020) Relationship between exercise and Alzheimer’s disease: a narrative literature review. Front Neurosci 14:131. https://doi.org/10.3389/fnins.2020.00131

Article  PubMed  PubMed Central  Google Scholar 

Yamasaki T (2023) Preventive strategies for cognitive decline and dementia: benefits of aerobic physical activity, especially open-skill exercise. Brain Sci 13(3):521. https://doi.org/10.3390/brainsci13030521

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eugenia AO, Aurelia C, Abidanovanty FM, Syahbani P, Wiyasihati SI (2022) The role of physical exercise as a prevention towards dementia. World J Adv Res Rev 15(3):192–197. https://doi.org/10.30574/wjarr.2022.15.3.0045

Article  Google Scholar 

Liu W, Zhang J, Wang Y, Li J, Chang J, Jia Q (2022) Effect of physical exercise on cognitive function of Alzheimer’s disease patients: a systematic review and meta-analysis of randomized controlled trial. Front Psychiatry 13:927128. https://doi.org/10.3389/fpsyt.2022.927128

Article  PubMed  PubMed Central  Google Scholar 

Rolland Y, de Souto Barreto P (2022) Exercise and dementia. Pathy’s Princ Pract Geriatr Med 2:829 – 42. https://doi.org/10.1002/9781119484288.ch67

Gkotzamanis V, Magriplis E, Panagiotakos D, Sanghuachang W, Hengudomsub P, Chaimongkol N, Kotchabhakdi N (2022) The effect of physical activity interventions on cognitive function of older adults: a systematic review of clinical trials. PsychiatrikiBelitung Nurs J 22(2):983–998. https://doi.org/10.22365/jpsych.2022.06029

Article  Google Scholar 

Firth J, Stubbs B, Vancampfort D, Schuch F, Lagopoulos J, Rosenbaum S et al (2018) Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. NeuroImage 166:230–238. https://doi.org/10.1016/j.neuroimage.2017.11.007

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif