The value of preoperative molecular testing in the management of Bethesda V and Bethesda VI thyroid tumors

Hall SF, Walker H, Siemens R, Schneeberg A (2009) Increasing detection and increasing incidence in thyroid cancer. World J Surg 33(12):2567–2571. https://doi.org/10.1007/s00268-009-0226-9

Article  PubMed  Google Scholar 

Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid Cancer. Thyroid 26(1):1–133. https://doi.org/10.1089/thy.2015.0020

Article  PubMed  PubMed Central  Google Scholar 

Mascarella MA, Peeva M, Forest VI, Pusztaszeri MP, Avior G, Tamilia M et al (2022) Association of Bethesda category and molecular mutation in patients undergoing thyroidectomy. Clin Otolaryngol 47(1):75–80. https://doi.org/10.1111/coa.13859

Article  PubMed  Google Scholar 

Macerola E, Poma AM, Vignali P, Basolo A, Ugolini C, Torregrossa L et al (2021) Molecular genetics of follicular-derived thyroid cancer. Cancers (Basel) 13(5). https://doi.org/10.3390/cancers13051139

Coca-Pelaz A, Shah JP, Hernandez-Prera JC, Ghossein RA, Rodrigo JP, Hartl DM et al (2020) Papillary thyroid cancer-aggressive variants and impact on management: a narrative review. Adv Ther 37(7):3112–3128. https://doi.org/10.1007/s12325-020-01391-1

Article  PubMed  PubMed Central  Google Scholar 

Chen B, Shi Y, Xu Y, Zhang J (2021) The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol (Oxf) 94(5):731–742. https://doi.org/10.1111/cen.14316

Article  CAS  PubMed  Google Scholar 

Ito Y, Yoshida H, Maruo R, Morita S, Takano T, Hirokawa M et al (2009) BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J 56(1):89–97. https://doi.org/10.1507/endocrj.k08e-208

Article  CAS  PubMed  Google Scholar 

Chakraborty A, Narkar A, Mukhopadhyaya R, Kane S, D’Cruz A, Rajan MG (2012) BRAF V600E mutation in papillary thyroid carcinoma: significant association with node metastases and extra thyroidal invasion. Endocr Pathol 23(2):83–93. https://doi.org/10.1007/s12022-011-9184-5

Article  CAS  PubMed  Google Scholar 

Li C, Lee KC, Schneider EB, Zeiger MA (2012) BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab 97(12):4559–4570. https://doi.org/10.1210/jc.2012-2104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cappola AR, Mandel SJ (2013) Molecular testing in thyroid cancer: BRAF mutation status and mortality. JAMA 309(14):1529–1530. https://doi.org/10.1001/jama.2013.3620

Article  CAS  PubMed  Google Scholar 

Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D et al (2015) Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 33(1):42–50. https://doi.org/10.1200/jco.2014.56.8253

Article  PubMed  Google Scholar 

Ferrari SM, Fallahi P, Ruffilli I, Elia G, Ragusa F, Paparo SR et al (2018) Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg 7(Suppl 1):S19–s29. https://doi.org/10.21037/gs.2017.11.07

Article  PubMed  PubMed Central  Google Scholar 

de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM (2006) RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 27(5):535–560. https://doi.org/10.1210/er.2006-0017

Article  CAS  PubMed  Google Scholar 

Nikiforov YE (2008) Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21(Suppl 2):S37–43. https://doi.org/10.1038/modpathol.2008.10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marotta V, Guerra A, Sapio MR, Vitale M (2011) RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol 165(4):499–507. https://doi.org/10.1530/eje-11-0499

Article  CAS  PubMed  Google Scholar 

Fagin JA (2004) Challenging dogma in thyroid cancer molecular genetics–role of RET/PTC and BRAF in tumor initiation. J Clin Endocrinol Metab 89(9):4264–4266. https://doi.org/10.1210/jc.2004-1426

Article  CAS  PubMed  Google Scholar 

Antonelli A, Fallahi P, Ferrari SM, Mancusi C, Colaci M, Santarpia L et al (2012) RET TKI: potential role in thyroid cancers. Curr Oncol Rep 14(2):97–104. https://doi.org/10.1007/s11912-012-0217-0

Article  CAS  PubMed  Google Scholar 

Xing M (2005) BRAF mutation in thyroid cancer. Endocr Relat Cancer 12(2):245–262. https://doi.org/10.1677/erc.1.0978

Article  CAS  PubMed  Google Scholar 

Santelli G, de Franciscis V, Portella G, Chiappetta G, D’Alessio A, Califano D et al (1993) Production of transgenic mice expressing the Ki-ras oncogene under the control of a thyroglobulin promoter. Cancer Res 53(22):5523–5527

CAS  PubMed  Google Scholar 

Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B et al (1989) High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4(2):159–164

CAS  PubMed  Google Scholar 

Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71–77. https://doi.org/10.1309/nd8d-9laj-trct-g6qd

Article  CAS  PubMed  Google Scholar 

Gupta S, Ajise O, Dultz L, Wang B, Nonaka D, Ogilvie J et al (2012) Follicular variant of papillary thyroid cancer: encapsulated, nonencapsulated, and diffuse: distinct biologic and clinical entities. Arch Otolaryngol Head Neck Surg 138(3):227–233. https://doi.org/10.1001/archoto.2011.1466

Article  PubMed  PubMed Central  Google Scholar 

Marotta V, Bifulco M, Vitale M (2021) Significance of RAS mutations in thyroid benign nodules and non-medullary thyroid cancer. Cancers (Basel) 13(15). https://doi.org/10.3390/cancers13153785

Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S, Panebianco F et al (2014) Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A 111(11):4233–4238. https://doi.org/10.1073/pnas.1321937111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panebianco F, Nikitski AV, Nikiforova MN, Kaya C, Yip L, Condello V et al (2019) Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr Relat Cancer 26(11):803–814. https://doi.org/10.1530/erc-19-0325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Pérot G et al (2015) Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol 33(20):e84–e87. https://doi.org/10.1200/jco.2013.49.6596

Article  PubMed  Google Scholar 

Ma Y, Zhang Q, Zhang K, liang Y, Ren F, Zhang J et al (2023) NTRK fusions in thyroid cancer: pathology and clinical aspects. Crit Rev Oncol/Hematol 184:103957. https://doi.org/10.1016/j.critrevonc.2023.103957

Article  PubMed  Google Scholar 

Park JC, Ashok A, Liu C, Kang H (2022) Real-world experience of NTRK fusion-positive thyroid cancer. JCO Precision Oncol 6. https://doi.org/10.1200/PO.21.00442

Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL et al (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690

Article  PubMed Central  Google Scholar 

Eszlinger M, Stewardson P, McIntyre JB, Box A, Khalil M, Hyrcza M et al (2022) Systematic population-based identification of NTRK and RET fusion-positive thyroid cancers. Eur Thyroid J. https://doi.org/10.1530/etj-21-0061

Article  PubMed 

留言 (0)

沒有登入
gif